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PART ONE. MOLECULAR MULTICENTER INTEGRALS 

BASED ON THE BIPOLAR EXPANSION 
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I. INTRODUCTION 

The difficulty of calculating molecular multicenter inte­

grals remains one of the major blocks to progress in quantum 

chemistry. The energy integrals for electronic interactions 

between orbitals on three or four different centers are espe­

cially troublesome. Two main types of orbitals have been used, 

Gaussian orbitals and Slater-type orbitals. The integrals 

over Gaussian orbitals are much easier to evaluate than those 

over Slater-type orbitals, but a rauch larger Gaussian basis 

set must be used to obtain the accuracy given by a smaller 

Slater-type basis set. Formulas have been found for inte­

grals over several kinds of Gaussian orbitals: Gaussians mul­

tiplied by powers of the Cartesian coordinates (Boys, 1950; 

Wright, 1953); ellipsoidal Gaussians (Browne and Poshusta, 

1962); and Gaussian radial functions multiplied by spherical 

harmonics (Harris, 1963; Krauss, 1964). A number of methods 

have been used to evaluate multicenter integrals over Slater-

type orbitals: expansion of an orbital on one center in terms 

of another fBarnett and Coulson, 1951; Barnett, 1963; Harris 

and Michels, 1965, 1966; Ellis and Ros, 1966); various kinds 

of integral transforms (Shavitt, 19 63; Shavitt and Karplus, 

1965; Bonham, Peacher and Cox, 1964; Silverstone, 1968a, 1968b; 

Silverstone and Kay, 1553; Kay and Silverstone, 1969b); 

sophisticated numerical techniques (Wahl and Land, 1969; 

McLean, 1971); Taylor series methods (Kay and Silverstone, 
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1969a); and asymptotic expansions (Kay and Silverstone, 

1970) . 

Many of these methods for evaluating molecular integrals 

are based on some kind of expansion for r^2 ^ ' the inverse 

interelectronic distance. For multicenter integrals, the bi­

polar expansion (Carlson and Rushbrooke, 1950; Buehler and 

Hirschfelder, 1951, 1952; Sack, 1954, 1967; Ellis and Palke, 

1965; Kay, Todd and Silverstone, 1969) seems to be a suitable 

one, but few applications of it (Ellis and Ros, 1966; Kay and 

Silverstone, 1970) have been made. 

The present work is concerned with further development 

of the bipolar expansion and its use to obtain new expres­

sions for both kinds of integrals, those over Gaussian orbi-

tals and those over Slater-type orbitals. 

The analysis is based on a recent form of the bipolar 

expansion (Ruedenberg, 1967) derived by means of Fourier 

transforms. A new type of bipolar expansion is derived, in 

which the radial factor is expressed as a double infinite 

series with the same functional form for all values of its 

arguments. This series is shown to converge. 

The new expansion for r^2 ^ is used to obtain a formula, 

involving only finite sums, for integrals over products of 

Gaussian radial functions and spherical harmonics. Unlike 

previous expressions for such integrals (Harris, 1963; 

Krauss, 1964) , our formula does not involve any rotation rep­

resentation matrices, which are very time-consuming to calcu­
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late. The integral expression has been put into a form suit­

able for efficient calculation of the large number of inte­

grals needed in a molecular problem. This form has been used 

as the basis for computer programs by Hubert Kinser and the 

present author. Those written by the author are presented and 

discussed. 

A "quadrupolar" expansion, involving four atomic centers, 

is derived from the new bipolar expansion. This expansion for 
_ 1 

r^2 is used to derive an asymptotic expansion for integrals 

over Slater-type orbitals on four different centers in terms 

of two-center charge distribution transforms. These have the 

nature of overlap integrals, and are finite sums over closed 

expressions. It is expected that this expression for the 

integral would be sufficiently accurate for cases in which 

either the orbital exponents or the internuclear distances are 

fairly large. In such cases only a few terms would be needed, 

so it is expected that an efficient calculational method could 

be based on the asymptotic expansion. 
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II. BIPOLAR EXPANSION AND GENERAL INTEGRAL 

A. Formal Derivation 

We wish to evaluate the integral 

^a a 

in which u^fr) is an atomic orbital whose functional form has 

not yet been specified. The subscript q denotes the set of 

three quantum numbers {n,2,m}, and the quantity r^^ the 

interelectronic distance. 

The first step is to express r^^ by means of the bipo­

lar expansion. For this purpose it is convenient to define 

the vectors. 

Xp, Xq = positions of two arbitrary centers (2a) 

^1' ̂ 2 ~ positions of two electrons (2b) 

-v-v -4- ->-> ^ ^ r->\ 
ri = Xi-Xp. = x^-Xg. R = Xg-Xp (3) 

and introduce the corresponding polar coordinates 

{r2,02/92^' {R,G,@} • (4) 

It is assumed here that the Cartesian coordinates on P and Q 

differ only by the translation R, not by a rotation. More­
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over, {R,0,$} are the polar coordinates of center Q in the 

coordinate system on center P. 

A bipolar expansion is defined as a series which ex­

presses a function ffr^g) in terms of products of functions 

of 6j^, d^, ̂ 2' G and This work is based on the bipo­

lar expansion of r^2 ^ derived by Ruedenberg (1967), which 

can be written in the form 

« >  + £ _  

..-'•z I I I  

* ̂   ̂1 5.«iTi-|rn̂  

with the definitions 

*'1*2̂  
(ri,r2,R) = [^] fdk (kr^)]^ (kr2)j3^(kR) (6) 

£.,£~m-m_ (£,+£„+L)/2 
w_ ^ ^ ̂  = 87T(-1) ^ 

x[ (2£^+l) (2&2+1) (2L+1) ] 1/2 

^1 ^2 ̂  

#2 My 

^1 ^2 ̂  

0 0 0 
(7) 
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M = (8) 

and the summation rules 

max { I 4^-22 i' |M|} ^ L < (9a) 

= even. (9b) 

The 

^1 ^2 3] 

m2  ̂ 2̂ ̂ 3 

are Wigner 3-j symbols, the Y are normalized spherical har­

monics, and the are spherical Bessel functions, which are 

related to the Bessel functions of the first kind by 

]%(%) = (%/2x)^/^ ^^+1/2 • (10) 

The integration over k is a result of the Fourier transform 

used in Ruedenberg's derivation (1967). 

Substitution of this bipolar expansion (5) into the 

integral (1), followed by interchange of the summations with 

the volume integrations, leads to 

00 +£^ 00 +^2 

• 2 1 2 2  ^ ^ ^ ^ ^ " Jipm,m^ (11) 
£̂ =0 2̂~~'̂ 2 
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in which 

'i''2"'r"2 

x(-i) JL ?ia(Q'*)wL 
ij 

and 

There are three different integrations in (12): two 

volume integrations and the integration contained in 

the r-dependent factor of the bipolar expansion. We would 

like to be able to separate these integrations from each 

other, so that they can be performed independently. This can 

be done if the integrand in can be expressed as a sum 

of functions, each of which is a product of a function of r^, 

a function of r^, and a function of both R and the integra­

tion variable k. To accomplish this we use the following 

expansion of spherical Bessel functions in terms of Laguerre 

polynomials (Abramowitz and Stegun, 1965, Item 22.9.16): 

j.(xy) = exp(-x^/4) J (y) (14) 
n=0 ^ 
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with 

(2n%(y) = y*Ln*^l/2(y2)y2n[2(n+&)+l]!! , (15) 

where 

(2p+l)1 ! = 1.3.5...(2p+l) 

= (2p+l)2/2PpI 

= 2P+I r(p+3/2)//? (16) 

and the functions 

L^^(x) = e^x ^(d/dx)"(e "x^^^)/ni (17) 

are the generalized Laguerre polynomials (Abramowitz and 

Stegun, 1965, Item 22.11.6). We write this expansion in the 

form 

(kZp) = jjj (xy) , with x = ka^, y = r^/a^ , (18) 

where a^ is a scale factor, to be determined later, with the 

dimension of a length, and p=l or 2. This expression is sub­

stituted for the spherical Bessel functions of kr^ and kr2 in 

the definition (6) of J. . _ . The two summations are then 
^1^2 

interchanged with the integration over k. It will be proved 

in section III that this interchange is proper and that con­

sequently the resulting series converges. Thus we have 
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CO 00 

£„L 2 2^ A; '1 2 n^=0 ^2=0 

*^hlAi(ri/ai)2L2l2(r2/a2) ' 

where the function (r) is defined by (15) and the function 

0^^(R,a^,a2) is defined by 

(R.a^.a^) = 
r 2") 2n̂ +£ĵ  2n2+&2 
Tïri ®2 

x(a,2+a22,-l2K+['+"/2 

xf dK exp (-<^/4) j (kp) . (20) 
U -L' 

is the same as ' of Salmon, Birss and Ruedenberg (1968, 

Eq. 2.1).) Here 

N = n^+n^+ {l^+i^-L)/2 (21) 

p = R/(a^^+a2^)^/^ . (22) 

Note that the index N, by virtue of (9a) and (9b) , is a non-

negative integer. The integration variable in (20) is related 

2 2 1/2 to that in (6) by the substitution k = k(a^ +a2 ) 

Ifhen this expression for the r-dependent factor, (19), 

is substituted into the bipolar expansion, (5), the result is 

a new form of the bipolar expansion 
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q, q_ ^1^2 ^1 ^2 

in which 

2 (24) 
q Z=0 m=-Z n^ 

W_ _ (R,aT,a^) = (-1) YTw(G'*)w 
1 > „ &l&2™i^2 

S1S2 ' 1' 2 ^ -LMT-' -'-L 

x(^^(R,3^,32) (25) 

Agir) = . (26) 

In (25) the summation over L is characterized by (9a) and 

(9b) , the quantity is defined by (7) , and M is given 

by (8). (W , is the same as R , of Salmon, Birss and 
qq qq 

Ruedenberg (1968, Eqs. 1.23 and 1.26).) 

On the other hand, when (19) is substituted into (12) 

and the summations over n^ and n2 are formally interchanged 
I 

with the volume integrations, a new formula for 'mm' 

obtained. We shall see that the validity of this interchange 

of summation and integration depends upon the form of the 

orbitale u. Supposing for the moment that it is valid, we 
I 

substitute the new expression for I.., , into (11) and find £.£ mm' 

a new formula for the integral defined by (1) 
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in which 

%qq' 'PPO-Sp' ' /% ̂lp»pqq' 'P^°'4p£p'=^p/^p' 

= V'^Pp'"q''^Op'\'V^p' • 

Here the quantity f is defined by (13), the quantity Ju by 

(15) and the quantity A by (26); the functions u are the 

atomic orbitals. Of course, (27) could equally well be derived 

by substituting the new bipolar expansion, (23), into the defi­

nition of the electronic interaction integral (1). 

It was possible to separate the volume integrations in 

(27) because of two properties of the r-dependent factor as 

given by (19) : first, each term in the series is a product of 

a function of r^, a function of r^ , and a function of R; 

second, the expression has the same functional form for all 

values of r^ , rg , and R . This second property contrasts 

with that of earlier expressions for the radial factor 

(Carlson and Rushbrooke, 1950; Buehler and Hirschfelder, 

1951; Sack, 1954) , which have different functional forms 

according to the relative values of r^ , r2 , and R ; there 
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2 

R 

0 
r 

Figure 1. The four regions found by Carlson and Rushbrooke 

are four forms, one for each of the four regions shown in 

Figure 1. However, these functions are all closed expressions, 

whereas (19) contains a double infinite series. 

B. Evaluation of 

The integral in (20) can be expressed (Abramowitz and 

Stegun, 1965, Item 11.4.28) in terms of the confluent hyper-

geometric function M(a,b,x) (Abramowitz and Stegun, 1965, 

Items 13.1.1-13.1.10). The result is 
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T 2n, + £- 2n_+2_ 
#^^^R,a^,a2) = a^ ^ a^ r(L+N+l/2) 

x[(a^^+a2^) r(L+3/2)]"^ 

X22M+L pL M(L+N+l/2,L+3/2,-p2) . (29) 

Now it is convenient to distinguish the cases N=0 and N>0. 

VThen N=0, which implies n^=n2=0 and L=2^+&2 ' we have 

(Abramowitz and Stegun, 1965, Item 13.6.10) 

M(L+l/2,L+3/2,-p2) = (L+1/2)Y(L+l/2,p2) , (30) 

where y(a,x) is the incomplete gamma function (Abramowitz and 

Stegun, 1965, Item 6.5.2). Consequently 

£ £ 
<^Q^(R,a^,a2) = ^ *2 ^ 2^ y(L+l/2,p2) . (31) 

In the case N>0, we use the Kummer transformation (Abramowitz 

and Stegun, 1965, Item 13.1.27) 

M(L+N+l/2,L+3/2,-p^) = exp(-p^)M(-N+1,L+3/2,p^) , (32) 

and since (-N+1) is a nonpositive integer, the righthand side 

is related to the Laguerre function of (17) by (Abramowitz and 

Stegun, 1965, Item 13.6.9) 
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M(-N+l,L+3/2,p^) 

= (N-1) I [r (L+3/2)/r (L+N+1/2) (p^) . (33) 

Substitution of (33) into (32) and then (32) into (29) yields 

(N_l)!RLexp(_p2)LQ_^L+l/2(p2) _ (34) 

With given by (31) and (34) , the function Wg^, of 

(25) has now been expressed in terms of known quantities. 

C. Special Cases of W , 
gg 

1. 0 = 0 

Sometimes it is useful to define the coordinate systems 

on P and Q so that both z axes coincide with the vector 

R = X^-Xp , which implies G = 0. This leads to the simplifi­

cation 

Y^(0=O,$)  = a^^[(2L+l) /4n]l /2  (35a)  

and, because of (8) , 

^1^™2 ~ ̂  ' (35b) 

Thus, the function W assumes the form 
9l92 
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' «-m,.m/-"'' [ I 

xw^ . (36) 

fi. ]_^ 2^1^2 
Note that = -m^ and M = 0 in the definition of 

(7) . 

2. R = 0 

When the two points P and Q coincide, i.e. R = 0, the 

expression for is considerably simplified. To find the 

new expression, one must investigate the behavior of as 

R -> 0 . We substitute the series expansion for y (a,x) 

(Abramowitz and Stegun, 1965, Items 6.5.4 and 6.5.29) into 

(31) to obtain 

/̂ Q̂ (R,a^,a2) = [a^'^ a^ ^/(a^^+a2^)^^^/^] 

x[2^'V(2L+1)]R^(1+CR^+..-) . (37) 

For N>0, we substitute the explicit polynomial expression for 

L^^(x) (Abramowitz and Stegun, 1965, Item 22.3.9) into (34) 

to obtain 
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^^L+N+1^ (2N+L-1) ! 1/(2L+1) I !] 

xexp(-p^)(1+c'R^+••-+c'* ^) . (38) 

It is clear that (R=0, a, a ' ) vanishes in both cases unless 

L=0, which, according to (9a) , is possible only if ^2.-^2 ' 

For L=0 we obtain 

^ ( 0 , a^, 3-2 ) 

where we have introduced l=Zj = Z2 and (-1)! 1 = 1 . The expres­

sion in (39) is valid not only for N>0, but also for N=0, 

because the simultaneous conditions L=0 and N=0 imply 

n^=n2=22"&2~^ " 

When L=0 (9a) implies, in addition to M=0 

and m^=-m2=m . These conditions lead to great simplification 

in the expression for co. The result is (Rotenberg et al., 

1959, p. 12, Eq. 1.54) 

' °]l '  '  
-m oyy 0 0 0 / 

= . (40) 
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These results, (39) ana (40), along with the fact that 

Y0Q(0,4) = 1/2/F (41) 

are substituted into the definition of , (25), to give 

w (tua^,a2) 2^'^^/tF(-1)"^(2N-1) I ! 

2n^+£ 25^+2 2 2. 
=<a^ a^ /(a^ H-a^ ) 2)N+l/2^ (42) 

where and 1=1^ . This is the one-center limit for 

This section will deal with the forms to which the bipo­

lar expansion reduces in certain cases, and some mathematical 

consequences of them. First the one-center limit will be 

considered, and then the multipole (large R) limit. 

1. One-center limit (R=0) 

We want to simplify the expansion (23) under the condi­

tion R=0. In the previous section an expression (42) was 

found for W ,{0,a,a'). That expression and the definition 

of , (26) , are substituted into (23); the result is 

w 
qq' 

that is, the limit when R=0 or ?=Q -

D. Special Cases of the Bipolar Expansion 
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0° 
-1 

12 
Jl=0 in=-£ 

00 CO 

xv/7 2 2 2"""(2N-1} i I/Ca^'+a,") 
,N+3 

n^=0 n2=0 

2 2\N»l/2 
1 2 

2n,+£ 2n2+£ p p 

where N = . 

Now, since P and Q coincide, the positions of the two 

electrons are specified with respect to the same origin, and 

r^2 ^ is given by the Laplace expansion (see, e.g., Eyring, 

Walter and Kimball (1944, p. 371, Eq. V17)) 

12 

CO +% 

£=0 in=-S. 

r & 
4it 
22+1 r 

-

(44) 

Then by comparing (43) and (44), we deduce the existence of 

g £,+1 
the following series expansion for r^ /r^ : 

2+1 

00 00 

^ 2 2  
n^=0 n2=0 

2^^1(2N-1) ! ! 

(45) 
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which, for the choice a^=a2=l , reduces to 

(2A+1) 
n^=0 ^2=0 

(2n^+2n2+2Jl-l) !1 

X (46) 

This series converges because, as will be shown, the series 

of (19) converges. 

2. Multipple limit (large R) 

In order to determine the form of the bipolar expansion 

(23) for large values of R, let us first examine the behavior 

of the function , which contains all of the R-dependence. 

It is clear from (34) that decays exponentially for 

large R if N>0 , so only terms with N=0 make a significant 

contribution to r^2 ̂  when R is very large. These terms con­

tain the incomplete gamma function, which can be expressed as 

the difference of a constant and a monotonically decreasing 

function of the argument (Abramowitz and Stegun, 1965, Item 

6.5.3) 

Here r(a,x) is the complemented incomplete gamma function, 

and the quantity p was defined in (22). For large p, the 

asymptotic expansion (Abramowitz and Stegun, 1965, Item 

6.5.32) 

Y(L+1/2,P^) = r(L+l/2) - r(L+l/2,p^) (47)  
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r(L+l/2,p2) = exp(-p2)p2L~l[i+(L_i/2)p 2 

+(L—1/2)(L—3/2)p +•••] (48) 

holds ; thus, also contains a term which decays exponen­

tially. In fact, (47) shows that can be expressed as a 

sum of a short range term, ^ long range term, 

= 

^Q^(R,a^,a2) = ^Q^^^(R,a^,a^) + (^Q^^^(R,a^,a2) (49) 

where 

(50) 

and 

= -&! ̂ ag  ̂R  ̂ % 2 

xr(&i+A2+l/2,P^) • (51) 

Here we have used the fact that N=0 implies that L=£^+£2 • 

This decomposition (49) enables us to decompose the expan-

sion for r^2 in a similar way into the sum of a short range 

term, SR, comprising the terms which decay exponentially, and 

a long range or multipole term, LR, comprising the other 
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terms : 

-1 (LR) + (SR) (52) r 12 

(This separation is analogous to that given by 0-ohata and 

Ruedenberg (1966, Eg. 4.4).) 

As we have seen, the long range term contains only terms 

with N=0. This implies that n^=n2=0 and L=£,^+£2 r that is, 

that only one term from the summations over n^ , ng , and L 

contributes to the long range term. To evaluate this term we 

shall use (50) and the relation 

£^'q^(x) = x^/(25,4-1) i I (53) 

which is a consequence of the definition of , (15) , and 

the identity Lq̂ (x) = 1 . The resulting expression for the 

long range term is 

(LR) = R ^ I I I I %,(& 
^1 ™1 ^2 

2 

(54) 

where 
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= (-1) ^ 2 ^ r(£^+5.2+1/2) 

V[(2£^+l) !! (2£2+1) ! I] (55) 

Use of the properties of the 3-j symbols (Edmonds, 1957, 

p. 48, Eg. 3.7.10) and of the expression for F(£+1/2) in 

terms of factorials (15) leads to 

^(£^m^£2m2) = 
i(2£^+l) (2£2+1) (2£^+2£2+1)] Î72 

(£^+m^)i (£^-m^)i(£2+^2^ * * 

1/2 

(56) 

The expression for the long range term given by (54) and (56) 

can be used to obtain Silverstone* s (1966) expression for the 

multipole term of a two-center Coulomb integral. Now if we 

make the particular choice 0=0 , (35a) and (35b) hold, and, 

letting m=m^=-m2 , we find 

^(£^m£2,-m) y 

X (£^-r£2) I [ (2£^+l) (2&2+1) ] -1/2 

X [ (£^-rm) ! (£^-m) ! (£2+m) I (£2-m) ! ] (57) 
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If this equation is substituted into (54) , the result can be 

used to obtain the expression of 0-ohata and Ruedenberg (1966) 

The snort range term is given by 

£ 
'SB' = Z 2  ̂

l̂̂ 'l 2̂̂ 2 

L n^=0 n2=0 

the function is defined by two equations, (51) and 

^n>0,1 (rya^fag) = ^j^>o 

with ^>0^ defined by (34) . It is clear from (34) , (51) and 

(48) that, for very large R, the short range term becomes 

negligible compared to the long range term. More than this 

can be said, however. The long range term given by (54) and 

(57) is identical with the multipole expansion which Carlson 

and Rushbrooke (1950) showed to be exact in the entire region 

R > r^+r^ (region of Figure 1). This implies that the 

short range term vanishes identically in this region. Since 

this is so for all values of the angles, the coefficient of 

each product 
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in (3R) must vanish. That is, for each allowed combination 

of 2, , ^2 ' and L (see (9a) and (9b)}, we have 

° ° njo njo 

" 42>!2'v®2' 

for r^+r^ < R . When L = l^+l^ , the first term of this 

identity has N=0 and , consequently, contains the complemen­

ted incomplete gamma function. Then (60) can be put in the 

form of an expression for that function; substitution of (51), 

(59), (34) and (15) yields 

r(£^+£2+1/2 AP ) = P exp(-p ) ̂  T , (61) 

^1^2 

where 

1 = 2 2 without the term with n=v=0 (62) 
nv n=0 v=0 

A (a b) = (2&+1) ' • (2A+1) I i2*+V(n+v-l) 

' [2(n+£)+l] !! [2(v+A)+l] I! (a^+b^)^^^ ' 
(64) 
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ana 

^ £+i+±/2j^2j x+l/2j^2j _ (65) 
^n+v-1 '""n 

When L < , there is no term with N=0 , so that 

in (60) can be replaced by . The series of (60) and 

(61) converge because that of (19) does. 
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iii. proof of convergence 

The derivation of the radial factor (19) involved two 

interchanges of summation and integration (i.e. term-by-term 

integrations). It must be shown that each of these is per­

missible. The main theorem to be used here is Theorem 1 of 

Appendix A. The proof for each interchange consists of two 

parts: first, to demonstrate that the interchange is valid 

for a finite interval of integration, and second, to show that 

one side of 

tate the proof, we rewrite the series for the spherical Bessel 

function (14) in the following way: 

( 6 6 )  

converges, where I^ is the integrand in question. To facili-

(kr) = 2 T^^ (ka,r/a) (67) 
n=0 

where 

t^^(k,r) 
( v/îr/2) exp [-(k/2) (k/2) 2n+&^&^ 2+1/2(^2) n 

r (n+£+3/2) 
(68) 

The value of the scaling factor a does not affect the argu­

ment, and will be set equal to unity for simplicity. 
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A. Validity of First Interchange 

From (6) and (67) we have 

2 r t J (r ,r ,R) = -± jdk 2 (69) 
^1^2^ ^ ^ /if 0 h^o ^ 

wnere 

U^(k) = (k'ri)i& (krziÎLtkR) - (70) 

We need to show that 

00 00 

Jp 0 7(^1/^2'^) ~ — J dk U (k) . (71) 
*1*2^ ^ ^ /ff n^o 0 ^ 

1. Interchange for finite interval 

We shall use Theorem 2 of Appendix A to show that 

k °° co _k 

/dk ][ d̂ lk) . / n - • ^  ̂dkU (k) , (72) 
0 n=0 n=0 0 

for any positive K. It is clear from the definitions of , 

(70), and , (68), that U^(k) is integrable on the interval 

0 _< k < «> , or any subinterval thereof. It remains to show 

that the series 

converges uniformly on the interval 0 < k < K , for any posi-
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tive K. In order to demonstrate this, we must first show 

that converges uniformly on this interval. Because of 

the following inequality for generalized Laguerre polynomials 

(Erdélyi et al., 1953, p. 207, Eg. 14) 

L ^(x) I £ e^/^r(a+n+l)/[r(a+l)ni] (73) 
^ I 

we have 

! ? 
(k,r) i tr^^(k,r) (74) 

with 

^ 2 _ (/^/2)exp[-(k/2)(k/2)^"^^r^exp(r^/2) _ 

^ r(£+3/2)n! 

The series 

2 %^(k,r) = [(/W/2)r&exp(r2/2)(k/2)*/r(A+3/2)] 
n=0 

xexp[-(k/2)2]2 (k/2)^^/ni 
n=0 

= (/F/2)r*exp(r2/2)(k/2)*/r(4+3/2) (76) 

converges uniformly on 0 ^ k < K for any positive K, because 

it is a power series in k with an infinite radius of conver­

gence. (See Theorem 5 of Appendix A.) Therefore, by the 

Cauchy condition for uniform convergence of series. Theorem 3 
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of Appendix A, for every £>0, there exists an N such that n>N 

implies 

n+p 

2 
i=n+l 
2 

< £ (77) 

for each p=l,2,---, and every k in 0 < k £ K. But (74) implies 

n+p 

i=n+l 

n+p 

i i 
I l^i 
i=n+l 

n+p 

i=n+l 

(78) 

so that 

2 T and , . . _ 
n=0 " n=0 2. 

also fulfill the Cauchy condition. Therefore these series 

converge absolutely for any nonnegative k, and uniformly in 

0 ^ k ^ K for any positive K. Now in view of the fact that 

|j^(x) j  < l/(2n+l)^/^ < 1 for real x, n>0, (79) 

which can be derived from (Abramowitz and Stegun, 1965, Item 

10-1.50) 

n=0 
(2n+l) [j^ (x) = 1 ( 8 0 )  

we have 
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l"n i ^ i'^n (81) 

and therefore 

n-rp 1 n+p n+p 

hi i"ii 
< 
2 1 < e . (82) 

i=n+l jj-=n+l i=n+l 

That is, the series for and that for |u^| satisfy the 

Cauchy condition, which means that the series for con­

verges absolutely for all nonnegative k, and uniformly in 

0 £ k ^ K for any positive K. Thus the conditions of Theorem 

2 are fulfilled, and (72) holds. Note that this argument 

holds for all values of {r^,r2,R}. 

2. Interchange for infinite interval 

In order to satisfy the remaining condition in Theorem 1, 

we shall show that 

00 CO 

Z ak iu (k) 
n=0 0 

&2+1/2 2 

n (ri') /t(n+&i+3/2) 

/: 
_ 2n+Jl-, 

xj dk exp[-(k/2) ] (k/2) |j (kr,)j- (kR) 
0 ^2 

(83) 

converges. For this purpose, it is necessary to have an 

upper bound on Ix-j^(x)|. We have seen, from (79), that 
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Ij^(x) I is bounded, so that when x=0, x-j^(x) = 0 . For all 

other values of x, it is clear from the relation (Abramowitz 

and Stegun, 1965, Item 10.1.8) 

x-jn(x) = sin (x-n7r/2) (x) + cos (x-mT/2) (x)/x , (84) 

2 where P^(x) and Q^(x) are polynomials in (1/x ), that |x-j^(x) 

is bounded. Thus, for nonnegative x, 

ij^(x) 1 < A(n)/x , (85) 

where A(n) is a positive number which depends only on n. For 

example, since we have (Abramowitz and Stegun, 1965, Item 

10.1.11) 

jQ(x) = sin(x)/x , (86) 

it is clear that A(0) = 1 . 

a. First term, for all values of For all 

values of {r^,r2/R}/ we can obtain an upper bound for the 

first term in (83). Application of (79) to both spherical 

Bessel functions shows that 

/dk |U_(k) I < C, (r,) (87) 
0 1 

where 
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CO 

[r*/r(%+3/2)] 
0 
dk exp[-(k/2)2] 

^ r^r(£/2+l/2)/r(£+3/2) (88) 

Then 

n=u u 1 n=x u 
(89) 

and the left side converges if the right side converges. 

Thus we will consider only the terms with n>0 in the follow­

ing. 

convergence of the right side of (89) , it is necessary to use 

somewhat different methods, depending on which, if any, of 

the quantities r^, r^, R are equal to zero. First, when r2 

and R are both greater than zero, (85) can be applied to both 

spherical Bessel functions in the integral of (83). The 

result, for n>0, is 

b. Case when r2,R > 0 In order to establish the 

00 

(90) 

where 
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(r^) /r(n+£+3/2) 

x/dk exp[-(k/2)2](k/2)2n+& ̂  
0 

= (r^) r{n+£/2-l/2)/r(n+Jl+3/2) . (91) 

Thus the series of (89) converge if the series 

n=.-

converges. To determine this, we must examine the behavior 

of the generalized Laguerre polynomial for large n. 

i. Subcase when r^ > 0 If r^ > 0 , Fejér's 

formula (Erdélyi et al., 1953, p. 199, Eq. 1) can be used: 

l^a(x) = (l/vf)e=/2x-a/2-l/4n*/2-l/4cos8 

+ C%na/2-3/4) , (92) 

where 9 is a function of x, n and a. Thus 

lim s . (r) = [exp(r^/2)//iFr] lim|cose |a , (93) 
n^oo n-3-oo 

where 

a^^ = n^/^r(n+£/2-l/2)/r(n+£+3/2) . (94) 

If Z is an even number, 2p, the argument of each of the gamma 
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functions is half an odd integer, so that one can cancel fac­

tors ; hence 

Sn,2p = nP[(n+2p+l/2)(n+2p-l/2)...(n+p-l/2)] ^ . (95) 

When p=0 

^nO = [(n+1/2)(n-1/2)] * = (n^-1/4) ^ (96) 

and 

lim a g/n ^ = 1 , (97) 
n->-a> 

so a^Q converges by Theorems 7 and 8. When p>0 

^n,2p < [(n+2p+l/2)(n+2p-l/2)]"^ < n"^ , (98) 

so 

n=J 

converges by Theorems 6 and 8. If ̂  ^ odd number, 2p+l, 

the argument of the gamma function in the numerator of (94) 

is an integer, so 

^n,2p+l = n*+l/2(n+p_i),/r(n+2p+5/2) (99a) 
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*n+l,2p+l ̂  (n+l)^^^/^(n+p)l/r(n+2p+7/2) 

= [(l+ajp*^/2(n+p)/(n+2p+5/2)]a^ 2p+i - (99b) 

rnus 

n+i,2p+l ^ ^ (n+p)/(n^2p+5/2) 
^n,2p+l ^ 

= 1 - 2/n + (5(l/n^) . (100) 

Then, according to Theorem 9, 

y 

converges. It has now been shown that 

a 

converges for all values of %. Therefore, since 

7. jcosGja . converges by Theorem 6, and, in view of (93), 
n=l ^ 

n=l 

converges by Theorem 7. 
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ii. Subcase when r,=0 If r^=0 , the only non-

trivial case is that in which £^=0. If &^>0 , all of the 

integrals on the left side of (89) are identically zero. 

Then we must test 

2 
by using (Erdélyi et al., 1953, p. 189, Eq. 13) 

1^(0) = r(a+l+n)/r(a+l)nl (102) 

We have, substituting this identity into (91) 

s^q(O) = r(n-l/2)/r(3/2)nI (103a) 

Sn+l,o(°) = r (n+l/2)/r(3/2) (n+1) (103b) 

thus 

= H-lZl = 1 - 3/2n + 3/2n(n+l) 
n+1 

(104) 

Therefore / 
n=l 

been shown that 

Sno(O) converges by Theorem 9. It has now 

n=l 
s^^(r) converges for all r and i; this. 

together with (90) and Theorem 6, shows that (89) converges 

for all values of r^ if r^ and R are greater than zero. 
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zero 

c. Case when r, > 0 , and r_ or R, but not both, equals 

In this case, we need the value of which is 

(Abrarnowitz and Stegun, 1965, Item 10.1.4) 

j^(0) = Ô 
nO 

(105) 

This relationship shows that if 2^=0 and R=0 and 

L>0, then both sides of (71) are identically zero. Hence we 

need consider only the case in which r2=0 and 2^=0, or R=0 

and L=0. Now since one of the 5,'s is zero, the other two 

must be equal, in view of (9a). Let r^ designate whichever 

of r, and R is greater than zero, and let S, designate £, = £ . 
z x g 

Then we apply (85) to and (105) to j^fO), to obtain 

for n>0 

C 

f< 
0 

dk lu^(k) I ^ (/F/2)[A(2)/2r jv^^fr^) (106) 

where 

/r(n+£+3/2)] 

/: X j dk expf-(k/2)2](k/2)2%+* ^ 
0 

= r (r^) j r(n+£/2)/T(n+£+3/2) (107) 

Again we apply Fejer's formula (92) and find 



www.manaraa.com

39 

liiri v^^(r) = [exp(r /2)/r/?] lim |cos8|b^^ , (108) 
n-><» n-too 

where 

= n^/^r(n+il/2)/r(n+£+3/2) (109) 

If ^ 52. even number, 2p, then the argument of the gamma 

function in the numerator is an integer, and 

bn 2p ~ n^(n+p-1)!/r(n+2p+3/2) (110a) 

^n+1 2p ̂  (n+1)^(n+p)!/r(n+2p+5/2) (110b) 

Therefore 

= f1+1 
n, 2p ^ 

(n+p)/(n+2p+3/2) 

= 1 - 3/2n + 0(l/n^) (111) 

so b^ 2p converges by Theorem 9. If ^ an odd number, 

2p+l, the argument of each of the gamma functions in (109) is 

half an odd integer, and cancellation occurs: 

^n,2p-rl = nP+l/2/(n+2p+3/2) (n+2p+l/2) • • • (n+p+1/2) 

< 1/n 3/2 (112) 
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2 ̂n,2p+l Thus ^ converges by Theorem 6, and we have shown 
n=l 

that 

„4l 

converges for all £. Then, since 

coselb^a < bn% ,  (113) 

^ jcos0|b converges by Theorem 6; and thus, because of 
n=l ^ 

, 2 (108), / V (r) converges by Theorem 7. Finally, because 
n=l 

of (106) , (89) converges by Theorem 6 when or R is zero. 

This result, together with that of the last section, demon­

strates that the conditions of Theorem 1 are satisfied. Thus 

(71) is valid, and its right side converges absolutely, when 

no more than one of {r^yrg/R} is zero. 

3. Interchange when two of {r^,r2 ,R.} are zero 

If two of the r's equal zero, then, because of (105) and 

(9a), both sides of (71) are identically zero unless 

= L = 0. In this case 

jooo(0,0,r) = 'tI) I'sk jo(0)jg(0)j,(r) 

J dk [sin(kr)]/kr = /rr/r , (114) 
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where we have used (105) and (86). This integral converges 

conditionally (Apostol, 1957, p. 433, Ex. 4); that is, it 

converges but ^°°dk j [sin (kr) ]/kr j does not. But 

00 00 

J'dkj [sin(kr) ]/kr| < Jdk ̂  |U (k) | , (115) 
0 0 n=0 

so the right side does not converge, and the condition of 

Theorem 1 is not satisfied. Nevertheless, it can still be 

proved that (71) is valid in this case; one simply evaluates 

each of the two sides and shows that they are equal. 

a. Case when r, = 0 When r, = 0 —jl j_ 

7# % Ak u„(k) = Î /dk 
n=0 0 n=0 0 

= 2 [l^l/2(0)/r(n+3/2)] 
n=0 

x/dk exp[-(k/2)^] (k/2)^^jQ(kr) . 

(116) 

To evaluate this we substitute (102) for the generalized 

Laguerre polynomial, and use (20) and (29) to perform the 

integration. The result is 
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OO _ 00 

2 
^ fdk U_ (k) 

tI % [r(n+l/2)/nI]M(n+l/2,3/2,-r^) 
n=0 

= r \(l/2,r^) + ̂  exp(-r^)L^_^^/^(r^)/n , (117) 

where we have used (30), (32) and (33) to express M(a,b,x). 

Now if we substitute n*=n-l in the last series, we find 

(Erdélyi e;t , 1953, p. 215, Eq. 19) that it has a known 

sum, namely 

r ^exp(r^)r(l/2,r^) = ^ L ,(r^)/(n'+1) . (118) 
n'=0 

Therefore 

7^ 2 /dk U^(k) = r"^[T(l/2,r^) + r(l/2,r^)3 
n=0 0 

= r ^r(l/2) = /rr/r . (119) 

Comparison of this with (114) shows that (71) is indeed 

satisfied in this case; however, since the series in (118) 

does not converge absolutely, neither does that in (71). 

b. Case when r^ > 0, r^ = R = 0 When r^ = r > 0 
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00 00 00 00 

7# Z/dk U^(k) . tI I/dk T„°(k,r).l.l 
n=0 0 n=0 0 

% L ^/^(r^)/r(n+3/2) 
n=0 

CO 

X /dk exp[-(k/2)^] (k/2)2n 
0 

= 1 •)/(n+l/2) . (120) 
£̂ 0 •• 

The last series is a particular case of the Fourier-Laguerre 

series of a power (Erdélyi et al., 1953, p. 214, Eq. 16) 

= r(a+s+l) y r (n-s)L^{x)/[r (-s) r{a+n+l) ] 
n=0 

under the condition -s < 1+min{a,a/2-1/4} , with parameters 

2 s=-l/2, a=l/2 and x=r . Then we have 

^ J dk U^(k) = /rr/r , (121) 
n=0 0 ^ 

and comparison with (114) shows that (71) is again satisfied; 

but, as in the case when r^ and one of the other two r's are 

zero, the series does not converge absolutely. 

4. Conclusion for first interchange 

It has been shown that (71) holds for all values of 

{ri,r2,R} except r^ = rg = R = 0 . In that case l/r^g is 
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infinite, and as one might expect, both sides of the equation 

diverge when = ^2 = ^ = 0 . If any of the £'s is not zero, 

both sides of the equation are identically zero. Furthermore, 

it has been shown that the right side of (71) converges abso­

lutely as long as no more than one of the r's is zero. In 

fact, when all of the r's are greater than zero, the conver-

r  - 2  gence is like that of n ; when any one of the r's is 

zero, the convergence is like that of ^ ; but when 

two of the r's are zero, the terms go like n ^ , and the con­

vergence is conditional (that is, not absolute). Here we 

write out (71) explicitly: 

2 lij^+1/2 2 
^1 " ^n 

(r^")/r(n+£^+3/2) 

(122) 

where 

C 

/< I^.^^(r,R) = J dk exp[-(k/2)^] (k/2)^j^(kr) j^(kR) . (123) 

B. Validity of Second Interchange 

Now we substitute (67) into (123) and obtain 

CO 00 

= fdk 2 V (k) (124) 
0 n=0 ^ 

where 
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vn(k) = t^*(k,r)exp[-(k/2)2](k/2)nj^(kr) . (125) 

We need to show that 

jtdk v^(k) . (126) 

1. Interchange for finite interval 

First, it is necessary to show, using Theorem 2, that 

.k ~ ^ k 

J dk > V (k) = 2- J àk V (k) (127) 
0 n^ ^ n=0 0 ^ 

for any positive K. Certainly V^(k) is integrable on the 

interval 0 < k < K , or any subinterval thereof. It must be 
nOO 

shown that the series 2^=0 ^^(k) converges uniformly on the 

interval 0 ^ k ^ K , for any positive K. In section III.A.l 

it was proved that ln=0^'^n® converges uniformly in 

0 ^ k ^ K , for any finite K. Therefore it satisfies the 

Cauchy condition. Theorem 3; that is, for every £>0, there 

exists an N such that n>N implies 

^ < £ (128) 

n+p 

I 
i=n+l 

^i 

for each p=l,2,*** and every k in 0 < k < K. Now the quantity 

1exp[-(k/2)(k/2)^j^(kR)| is bounded in 0 < k < K ; let its 

maximum value be denoted bv B. Then 
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n+p n-̂ d 

2 
i=n+l 

2 < Be (129) 

i=n+l 

for each p and every k in 0 £ k ^ K if n>N. That is, for 

every £*>0, there exists an N such that n>N implies (129) for 

each p and every k; thus the series 1^=0 ̂ n^^^ and 

^n=0 I converge absolutely for any nonnegative k, and 

uniformly in 0 ^ k <; K for any positive K. Therefore the 

conditions of Theorem 2 are satisfied, and so (127) holds. 

This argument is valid for all values of r and R. 

2. Interchange for infinite interval 

The last step consists of showing that 

Jsk 'È I = J 
0 n=0 

dk exp[-(k/2)2](k/2)N|j^(kR) 

|t^ (k,r) 
n=0 

(130) 

convergesf in order to satisfy the hypothesis of Theorem 1. 

For this purpose we use (74) and (76) to obtain 

/ dk 
0 n=0 

I ( k )  I  <  ( / iT/2) r^exp (r^/2)/r (5,+3/2) 

/: xjf dk expi-(k/2)2] (k/2)N+A|j^(kR) | . 

(131) 

The integral on the right exists, so the left side must con-
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verge. Then according to Theorem 1, (126) is valid, and, in 

fact, the convergence of the right side is absolute. Note 

that this proof holds for all values of r and R. 

C. Validity of Bipolar Expansion 

It has now been shown that both of the term-by-term inte­

grations used in the derivation of (19) were permissible. 

This means that (19) and the new form of the bipolar expansion 

(23) are valid. The sums on the right side of (19) converge 

in all cases except when r^ = rg = R = 0 and 2^ = &2 = & = 0 ; 

in that case, both sides of the equation diverge. 

The final result of this section can be obtained explic­

itly by substituting (126), (125) and (68) into (122); it is 

jo 0 t/ri'rp'b) = "t 
*1*2̂  ^ ^ ^ r(n^+il^+3/2) 

"̂ 0 r(n2+%2+3/2, 

xj dk exp |-k2/2](k/2)2B'+Lj^(%g, 
Jo 

(132) 

in which N' is the N of (21). This is the same as (19), 

with a^=a2=l. 
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IV. INTEGRALS OVER GAUSSIAN ATOMIC ORBITALS 

A. Integrals over Complex Gaussians 

1. Coulomb integrals over Gaussian charge distributions 

The results of this section were obtained by Birss 

and Ruedenberg (Salmon, Birss and Ruedenberg, 1968); they are 

summarized here in order to make the discussion complete. 

It was shown by Boys (1950) that all electron repulsion 

integrals with Gaussian atomic orbitals can be reduced to 

integrals of the type 

^12'^ 9q ' Vai'V < 

where the g^ represent Gaussian "basic charge distributions" 

given by 

9g = SnJlm^ = ;3(%r)2n+&exp(-;2r2)Yg^(8,*) . (134) 

As in section II, the coordinate axes on the centers A and B 

are parallel, but and z^ do not necessarily coincide with 

the AB direction. 

If in (1) and (28) the orbital product Ug*Ug, is replaced 

by the Gaussian basic charge distribution g , then (27) be-

comes an expression for the integral Now, since the 

centers P and Q in the bipolar expansion are arbitrary, we can 

choose P=A and Q=3, so that the position of each electron is 

specified with respect to the same origin in both the expan­
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sion and the charge distribution. This enables us to use the 

orthogonality properties of the spherical harmonics in (28) 

to obtain 

,a) = Jd dV g (;r)A (r/a) 
^a 

n 
(135) 

where G is defined by 
q 

^ = (-l)^fr^dr ;^(cr)^^^^exp(-c^r^)d6^ 2(r/a) (136) 

Choosing a=ç ^ , using the definition of (15), and making the 

2 substitution (çr) = t , one finds 

= ( (-1)^^(2^+1 [2(k+2)+l] 11}] 

fdt L,*+l/2(t)exp(_t)t" 

0 ^ 
(137) 

The integral in this equation is essentially an expansion 

coefficient of t^ in terms of the Laguerre polynomials 

L^^^^/^(t) , and therefore vanishes for k>n. The nonvanish-

ing Gg^ can be written as (Rainville, 1960, pp. 206, 207) 

,2k+£+l 

1 r 

kl(n-k) i 

r(n+2+3/2) 

(k+%+3/2) 
(138) 
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Now, substitution of (135) into (27) yields the final formula 

for the Coulomb integral defined in (133) 

""a  ̂

n^=0 n2=0 

It will be recalled that the derivation of (27) involved 

term-by-term integrations which have not been proved to be 

valid. Thus we must either prove their validity, or find an 

independent check on (139). There are, in fact, two such 

checks (Salmon, Birss and Ruedenberg, 1968, section IV). 

First, (139) can be derived from (11)-(13) by replacing 

Ug*u^, by g^ , interchanging the order of integration, and 

using the polynomial representation for the Laguerre function 

which results from the volume integration. Second, (139) can 

be shown to be equivalent to the results obtained by Krauss 

(1964), by rotating the axis systems on the two centers so as 

to have and coincident with the AB direction. Thus (139) 

is verified; the infinite series not only converge, but they 

reduce to finite sums. 

The nuclear attraction integral 

[g^l6(rB2)] = JdV (140) 
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can be derived from (139) if the charge distribution 

is replaced by the three-dimensional delta function 

5 (rgg) = [(;b^/%^/^)exp(-s^2rg2^)] 

lim [ (2 /7 r )  

'b" 
Ç. -X» 

(141) 

The final result is 

= 8/?(-l) " (G'O) 
a a 

m 

n 
&_ -, n, 

2 '°)=n 1 m 
/ s i  &  3 .  &  n^=0 

(142) 

The results of this section will be used in the evalua­

tion of integrals over Gaussian orbital products. 

2. Integrals with complex Gaussian orbitals 

We now choose the orbitals u of section II to be unnor-

malized complex spherical Gaussian orbitals 

= ;3/2(cr)aexp(-c2r2)y^^(9,4) (143) 

so that the integral to be evaluated is 
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r C Cl C C, 
I = Xs IXc Xg ] 

= /dV^/dV2 XA''(l)XB''<l)ri2'V<2)XD'^(2) . (144) 

c c The first step is to express the orbital product Xg as a 

linear combination of the Gaussian basic charge distributions 

defined by (134) . To do this, we choose the point ? such 

that 

P = , (145) 

and consequently (Boys, 1950) 

, 2  2 ,  ,  2  2 ,  
expf-;^ r^ )exp(-;g r^ ) 

= exp[-(ç^^ÇgVçp^)R^^3exp[-Çp^rp^] , (146) 

where 

Observe that the point ? always lies somewhere on the line AB. 

Next, we translate the spherical harmonic in each orbi­

tal, without rotation, to the point P, using the relation 

(Steinborn, 1969) 
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Pm^ ®A' I 1^1 
mq E 

'A " m ' "A' XA' i- 6 *&E ^P ^P' 
£—u n 

?(-;,m-n(Gaf'*Apl ' (1491 

in which the summation on n is governed by 

n i: £ (149a) 

m-r i  <:  £ -e  (149b) 

and the constant Q. is defined by 
i ts  

(150a) 

and 

= {[(2A+l)/2](&+m)l(2-m)I}l/2 (150b) 

The coordinates are related by r^ = + rp . The result 

of this last operation contains products of two spherical 

harmonics with arguments Qp'^p ' to each of these products 

we apply the identity (Edmonds, 1957, p. 63 , Eg. 4.6.5) 

YE^(8,4)YE,^,(8,4) = (-1)^ I 
(2E+1) (2e'+l) (2£+1) 

4it 

1 / 2  

£ £' U £ e' £\ 
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with 

m = -Ti-n' (151b) 

c c These manipulations lead to an expression for Xg which 

contains five summations; they are governed by 

0 ^ ^ Jl, (152a) 

0 ^ ^ I B (152b) 

-£ 

max< L 
+ £ 

n ^ min< (152c) 

max< 
- £  

^ n ̂  mm 
+ £ ' 

i' £b+^~£ i 
(152d) 

I £-£ 
max< > < < £+£ ' , £+£* + £ = even. 

|m I 
(152e) 

For computational convenience, we replace the first four 

of these indices by new ones, defined by (151b) and 

a =  a^- i^-e+e '  (153a) 

S = W^"^' (153b) 

6 = m^-mg-ri+n ' (153c) 

The summation on £ is interchanged with those on m and 6, 
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which leads to the final conditions on the summations 

*3 ^ G 2 && (154a) 

I a I ^ 6 ^ 5,^+ilg-1 il^-£g-a i , a+3 = even (154b) 

max< r < H < &,+&c-8 r £,+£„+a+£ = even (154c) 

r -I-
max< 

-m^-Ji,+a 

+Z 

> < m < min< 

I 

-ma-mg+B 

-ma+&g+a 

L"W * 

(154d) 

max 

m^-mg+m-2£g-a+6 

m +m +m+a~ 3 A J5 
>< 8 < min< 

m^-mg-m-2£^+a+6 

^ -m^-mg-ra-a-6 
J 

m^-ing+m+2 £g+a-B 

m^+mg+m-a+3 

m^-mg-m+2£^-a-6 

-m^-mg-m+a+3 j 

M154e) 

The expression for the orbital product is 

Xg BagfpfT)! I I I P ^ct3£m ' (1^5) 
a 3 £ m ^p 

.a_3 

where the following quantities have been introduced 

Bab(P.T) = ( T + T  
-1/2 

exp(-p ) (156a) 

^ ^A^B^As/Gp (156b) 
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T = {156c) 

= {(&,+&_-g-2)/2,&,-m} (157) 9p = 

m n 

£_-£' rrLTi' 

(2e+l)(2e'+l)(22+1) 
417 

1/2 e e* Z\ U e' i\ 
. (158) 

n Ti ' m/\ 0 0 0/ 

The summations are governed by (154), and Çp is given by 

(147). The constant Q is defined by (150), and e, e*, nf and 

n' can be obtained by inverting (151b) and (153). 

C C 
Now, since the orbital product Xg has been expressed 

as a linear combination of the charge distributions gp , the 

integral I of (144) must be a linear combination of the inte­

grals [gpIg^] of (133) and (139). We have 

^ ®AB ̂"^I'^l^^CD , r,l , , A. (aBJimn)^ (agJLmn) ̂ 

^2 ^2 ^2 
"""^1 Pi C(Qgaa)^Gg^ ^2 P2 ^(a3Jlm)2^qg 

x%L n _ _ n _ (R„^,ç^"^,ç "^) , (159) 
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where G is given by (138) and W by (25). This result was 

first obtained, in a slightly different form, by Kinser and 

Ruedenberg (1971). They have discussed the constant 

The index n has limits 

'a$Sjn 

0 < n < ( £^+£g-g-jl)/2 (160) 

A formula for the nuclear attraction integral can be 

c c found in an analogous manner by replacing Xn Xg by the delta 

function of (141) and using (142) instead of (139). 

B. Integrals over Real Gaussian Orbitals 

For many purposes it is more convenient to use real 

Gaussian orbitals instead of complex ones. Then we would like 

to evaluate integrals of the type 

T _ r R R| R R, 
t Xa Xfi I Xc XD 3 

in which the real Gaussian orbital % is defined by 

'Jim 2, 
y=± m| ^my ^£y 

(162) 

Here the complex Gaussian orbital y was defined by (143), 
5.U 

and the constant M is given by my 

Moo = 1/2 (163a) 
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and for m ̂  0, 

'M, Ml m m m| , m 

Iml,Iml Iml,-|m 
- i  i ( - l )  

m \ 

(163b) 

1. Real orbital product 

First we wish to express the product of two real orbi-

R R 
tals Xg in terms of the Gaussian basic charge distribu­

tions. The definition (162) gives immediately 

y ^ ^ = y y M M Y 
A™A &A^A ^B^B 

(164) 

Substitution of the expression (155) for the product of com­

plex orbitals into this equation yields 

" a H m '' Sg^ 
(165) 

The conditions on the summations are : 

Pa = -1^1 (166a) 

^B = (166b) 

^B ̂  a ^ ̂ A (166c) 
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kl < 6 < a+B=even (166d) 

max-
(l'-A-Vll 

IIpa+I^BI-BJ 

< £ < Jl+a+£^+S.g=even (166e) 

max y i m < mm V 

l^-Ug+V" 

(166f) 

On the right side of (165), only the constants M and C depend 

upon the indices and ; the other factors, containing 

the dependence on the orbital exponents and electronic coor­

dinates, are independent of these indices. Thus it is desir­

able to rearrange the summations as follows: 

After considerable algebraic manipulation, we find the new 

limits to be : 

(167) 

3 a 3 (168a) 

|al < B a+3=even (168b) 

£+a+£^+5,g=even (168c) 
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Il I & 
-min < > < m < min-

^hi 

m 2 m 5,0 
(168d) 

Ub = 

(168e) 

(168f) 

with the definitions 

^Zo " max{|Aa-&a-a|/ I bal-lm^I1-3} "A "B B' 
(169a) 

m. = max• 
£0 

I^aI-I^BI -3 

(169b) 

&B+I^Al+* 

= min<&^+|mg|-a (169c) 

Notice that (168d) implies that when m^^ is positive the sum­

mation on m will split into two sums 

-m 
£0 5ii 

terms with m values in between these ranges do not occur. In 

addition to (168e) and (168f), there are the following re-
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strictions on and : 

ly^+Ugl < £+13 {170a) 

-m-litig|-3 y < < minJ > (170b) max 
—m+£g+a 

^ -in-£g—a 

|-y%-6-m| J-y^ + g-m 
max' 

'-A 

^ < y^ < min< ^ \ . (170c) B i  
|—£,+a—iTil l£^—a—m 

Thus, not all four combinations of y^ and y^ will occur for 

each m. In fact, Hubert Kinser (private communication on the 

summation conditions, 1970, Iowa State University, Ames, Iowa) 

has shown that for certain values of m none of the combina­

tions are allowed, which implies that these values of m are 

not allowed. 

With the summations restricted by (168)-(170), (165) 

becomes 

'Va ° H U 
(171a) 

with 

°a6£m . (171b) 

The quantities in these equations are defined by (156)-(158), 

(134) and (163) . Since M and C depend only on the quantum 
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numbers, the positions of the centers A and B, and the summa­

tion indices, the sums over and can be performed imme­

diately, before (171a) is substituted into the integral of 

(161) . 

Because the left side of (171a) is real, the right side 

is real, also. Furthermore, this is true for all values of 

T and p. It is clear from (156) that B, x, and p are real. 

Then the coefficient of each product of powers of t and p 

must also be real; that is, the quantity 

I I 

is real for each combination of a and g. 

2. Real form of the bipolar expansion 

It would be possible to derive an expression for the 

integral of (161) by using (164) to express it as a linear 

combination of sixteen integrals over complex Gaussians, of 

the type given by (144) and (159). This approach would give 

an expression involving complex quantities. Since the inte­

gral of (161) contains only real quantities, it is itself 

real, and it should be possible to derive a formula for it 

which contains only real quantities. To accomplish this we 

need only express the bipolar expansion for r^2 ̂  iii terms of 

real functions. 

First we write down the bipolar expansion of (5) and put 
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it into a form with summations over only positive values of 

m^ and 

oo +2^ «> +^2 

2 Z I 2 s,. 
£^=0 m^=-2^ m2=-£2 

00 2^ M &2 

2 2 2 2 
2^=0 m^=0 22=0 #2=0 

X r (T + T ) 

+ (T + T ) ] 
9^ 2 2 ' ̂2 1 ' "^2 f ̂  2 f ̂ 2 

(172) 
Here the term T is given by 

The suimiation on L is restricted by (9) , and w and M are 

given by (7) and (8), respectively. The function J is defined 

by (6); notice that it is real. In fact, the only complex 

quantities in (173) are the three spherical harmonics. Appli­

cation of the identity (Edmonds, 1957, p. 21, Eg. 2.5.6) 

Y^„*(e,4) = (-1)" (174) 



www.manaraa.com

64 

to each of these spherical harmonics, followed by use of (8), 

yields 

* 
T = T (175a.) 

ana 
* 

T = T (175b) 

Then (172) can be written as 

oo GO ^2 

•^12"^= 2 2 2 2 ['i+Vo' (i+Vo"'' 
^1=0 m^=0 22=0 ̂ 2=0 

where denotes the real part of the argument. 

In order to evaluate the real part of T, we express each 

spherical harmonic in terms of its real and imaginary parts, 

and multiply the three expressions together. Then we make 

use of 

_m(8,*)] = (-1)™ ^[Y^^(0,4))] (177a) 

= -(-1)"" cg^[Y^^(8,(^)] , (177b) 

which is a consequence of (174) . Finally, the notation 
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R_j_(z) = (&.(z) = real part of z 

R_(z) = S^{z) = imaginary part of z 
(178) 

and 

S+lml (+'+) S+lml 

5,1^1 (-/ + ) S, I I m + m 

+1 -1\ 

1-. -Il 

(179a) 

S-|ml(+'+) 2-|m|(+'-) 

S - l m l 2 - i m i  

= (-1) m, 
+1 +1 

-1 +1 

(179b) 

is introduced. The result is 

£, £,£-m-m„ 

Here M is defined by (8), and the summation conditions for L 

are given by (9). Notice that the value of M, and hence of 

the lower limit on L, depends on the sign of m2 ; m^ is 

assumed to be nonnegative. The product en is taken to be + 

if £ and n are the same, - if they are different. Because 

J7>w(y^0^ = 0 , terms in (180) with m^=0 and e=- , or #2=0 

and n=-/ or M=0 and er]=- must vanish. 

Now, to put this in its final form, we substitute (19) 

for J in (180), and put the result in (176). The function 
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in (19), given by (31) and (34) , is written in the fol­

lowing way: 

(^^(R,a^,a2) = (2a^) ^ (23^) 
2n^+&^ 2n2+&2 

xR^ ' (181) 

with 

f^^(x,a) = r(L+l/2)Y*(L+l/2,x) (182a) 

f2N+L^(*'*) = a-N-L-1/2 (N_i) le"^ . (182b) 

The index N is taken to be greater than zero in (182b), and 

in (182a), the function y* is related to the incomplete gamma 

function (Abramowitz and Stegun, 1965, Item 6.5.4). Next two 

new quantities are defined: 

w/'1^2"I^2 ̂  M ^ &1%2^Ï™2 ^ (183) 
L Xj Xj 

and 

, (184) 

which is related to the solid spherical harmonic 

'VlmIS) = . (185) 

M The constant is defined by (150b). Then the real form of 
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the bipolar expansion is 

-1 r r « r / , r \-i -1 
"12 = J, 2t<l« 

9 2̂  9 2 

^ 2 ^ 1 2 ^ 2  ( 1 8 6 )  

with 

and 

CO  ̂ oo 

1 = 1 1 1  ( 1 8 7 )  
q' 5,=0 m=0 n=0 

£-i 2n,+£, 2n^+Z~ 
<2^1> '^^2' 

The function A is given by (26) and (15). Equations (186)-

(188) represent a further development of a result obtained by 

Kinser and Ruedenberg (1971). 
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3. Integral formula 

a. Preliminary formula Now we will combine the 

results of sections 1 and 2 to obtain a formula for the 

desired integral. First the expression for the product of 

real orbitals (171a) is substituted twice into the integral 

(161). The result is 

^ ®AB^°l'"l^®CD^^2'^2^ 

with 

V V V V ^2 ^2 ' (189) 

^12 ^'q^^^Q-Q2^°(a6£'m') 2 - (190) 

Again we choose the origin points in the bipolar expansion to 

be the points P and Q defined by (145), and the scaling param-

-1 -1 eters a^ and a^ to be and Cq , respectively. Now the 

bipolar expansion of (186)-(188) is substituted into (190). 

The result contains products of two integrals of the form 

(191) 

where 
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n' = (&A+&B-6-A')/2 . (192) 

It was shown in section 1 that the quantity in brackets is 

real, which implies that the integral G' is real. It can be 

evaluated by using 

(135), and the fact that Gg,^ vanishes when n>n' . The 

result is 

SimaSe = 

provided that 

Jlgg < I < £+a+£^+jlg=even (195a) 

< m < min{£, (195b) 

0 3 n 3 n' ; (195c) 

for all other values of {Jlmn}, G' vanishes. The quantities 

G and D in (194) are given by (138) and (171b). Now we have 

for I ' 
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In^+i 2n +A 2 
x(2/;p) 1 ^ (2/;^) ^ ^ (-1) 

with 

; = y w *1*2^1^2 L 2 -2 -2 
^1^1^1^2™2^2 L 2N+L ' P Q ^ 

%L nL 

'"^'•l'°lVl®l^ =«2l»2lV2®2'' • 

The summation on L is governed by (8) and (9); the lower 

limit depends on the sign of . The other summations are 

restricted by (195). 

b. Reordering of sums This formula can be put into 

a form which is more convenient for computation. First, the 

two indices n^ and n^ are replaced by new indices, and 

defined by 

a = 2n+& , (198a) 

with limits 
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£ <: a < & +& -B (198b) 

These new indices are the exponents on (2/Çp) and (2/Cq), 

respectively. Notice that, in view of (21) , the subscript on 

^2\+L^ is equal to ' ^^xt, the order of summation is 

changed from 

I I I 
5. m a 

to I I I 
a £  m 

the consequent new limits are 

ho'- ° 

m^o ^ ^ min{ i l ,  

a+ CC+ £^+ £g=even 

a+£=even 

(199a) 

(199b) 

(199c) 

with and m^^^ defined by (169) . At this point 

can write (196) in the form 

we 

•a,6,ap3o ^ ^(a3a)^(a6a] 
1 1 Z Z On O2 -L 

(200) 

in which 

1-, 
V 
(aSa) 1(060)2 ' I I I  I  2 ( - l )  

-1 

X (T + T ) (201) 
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with n = (c-Z)/2 . All factors which depend on the orbital 

exponents, except those contained in T, have been moved out­

side of the sums on functions 

contained in T, depend on the orbital exponents, because 

R = RpQ depends on the positions of the points P and Q, 

which in turn depend on the orbital exponents. We now move 

the function f outside of the sums on making the 

following interchange of summations: 

I I I I I 
^1 ̂ 1 ^2 ^ 

I I I I I 
L 2,^ m^ ^2 ^2 

( 2 0 2 )  

Because the lower limit on L depends on the sign of la^ , the 

new limits must be obtained separately for the term with +m2 

and that with -m. For +m2 we have : 

M = -m^-m2 (203a) 

^ï&o+^2&o j 

^^2Jlo"^l 

< L < 0-^+02 L+a^+a2=even (203b) 

maxj %2&o-L 

L-a-, 

22 ̂  min 

V 

1 

L+a. 
&2+o^=even (203c) 
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max < < mini 
llWilj [L+JI. 

£2+c?2~®^*^^ (203d) 

-•"mo ^ ^ ' 

i L-m 22o . 

(203e) 

r 

*220 - *2 i mm "^2 hi 

J 

(203f) 

For the limits on and the same as above, but 

the other limits are: 

M = -m^+m2 (203g) 

*l&o ^2hil 

maxi "2A°-*lhiI < L < c^+c_ 

&lAo-°2 

.^2£o"^l 

L+a^+a2=even (203h) 

max-;^l£o 

1^220"^ 

< m^ < min-s (2031) 
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m 2&ol 

m^-Ll 
< #2 < min' f ^0 ^2hi " 

^L+mi ] 

(203j) 

We can take (203h) to give the overall limits on L, but we 

must remember that there is no term with M=-m^-m2 if 

L < miao+mzao • 

This interchange of summations yields, for V of (201), 

^(aScj) | *^0 ' 

with 

, £-J2,,m-(snu) 

° 11 (i+Vo' : "L 
1 2 m^mg 1 2 

*G%+ Til± ^^3^2) ^ 

^^(aea£m)^^^AB'%B^^(aea£m)2^^CD'^CD^ ' (20^) 

The following notation has been adopted: 

^agaJlm^^AB'^^ " Smnage 

^AB ~ 

(206) 

(207) 
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The limits on m^ and are given by (203e) and (203f), M by 

(203a) when s=+ ; U^=0 if L<m, ,, +m_„ . The limits on m, 
l&o 2£o 1 

and are given by (203i) and (203j), M by (203g) when s=- . 

The limits on L, and are given by (203h), (203c) and 

(203d) . 

c. Transformation of last step is to trans-

rC -> 
form the function so as to separate the dependence on 

orbital exponents from the dependence on the geometry of the 

centers A, B, C and D. For this purpose we choose the point 

M to be the midpoint of the line A3, and the point N to be the 

midpoint of the line CD. Then we have 

^ • (208) 

Two applications of Steinborn's (1969) result, (148)-(150), 

lead to 

L 

% Z ̂A,u, ^L-X, ,M-p. '%IQ' 
Ai=0 

= I 2'2 2 
Ai=0 ^2=0 Wg 

'^L-Xi-À2,M-yi-y2 

where the definition of (184) has been used. The summations 

on and y 2 restricted by 
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IpJ < H 

iM-y^j < L-À^ 

(210a) 

(210b) 

^2 ! ^ ^2 
(210c) 

|M-P^-P2! ^ (210d) 

Substitution of the definitions of ^ and T, (184) and (156c), 

and use of the identity 

^ ^®BA' (211) 

transform (209) into 

l L-X 

(212) 

Ài-0 X^-0 

with 

b^ = (1- T^2)2^^/2(1+ T^2) 

b, = (l-T22)RcD/2(l+T22) 

(213) 

, ^(ABCD) 
^ 1 2  

= 2n(-l) RKK 
L — ^ 2  

^ ^ ^®AB' \B^ 
^1^2 11 

*^A2U2^®CD'*CD)YL_X _X M_p (0MN'*MN) ' (^14) 
^ ^ 12 12 
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and 

(215) 

The quantity %- depends only on the geometry of the centers 

ABCD; the dependence on the orbital exponents is entirely 

contained in and b^ . Thus it is desirable to move the 

suras on and as far out as possible. Since the limits 

depend only on L, the suras can immediately be moved outside 

of those on then interchanged with that on L. 

The new summation conditions are 

0 < (216a) 

0 < A^ < 0^+02-A^ (216b) 

Combining the results of this section, we have the final for­

mula for the integral of (161) 

(216c) 

L+o^+02 = even (216d) 
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ot-1 B-
I = B 

AB (p^yT^)B^Q(p2,T2) I "^1 J ^ ^1 
3t O. a. 

=<1 x/m 
a. 

Q A X -1 X ̂  
^2 Ï b 1 % b 

1 '^(aSaX)^(aBaX)2 ' 

here the quantities 

= 2/;p , &2 = 2/;^ (218) 

have been introduced, along with 

^(a3aA) ̂(aBaA)^ ^(aBaA) ̂(aBaA) 2 

IJ, J. 

(sin«) TM 
•<"L I ^ t"(aacD,] 

£—— T) — Z Z JL Z 

""^(aBaim) ̂^^AB'^AB^^(aBaJlm)2 ̂^CD'^CD^ * 

The function B is defined by (156a); p^ and P2 by (156b), 

and T2 by (156c), with subscript 1 associated with ABP, 2 with 

CDQ; b^ and b2 by (213); f by (182); w by (183); S by (179); 
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% by (214); and G by (206), (194), (138) and (171b). The 

summations on a^, , a^, ^2 governed by 

(154a), (154b) and (199a), with subscript 1 associated with 

AB, and 2 with CD. The summations on L, ^2 

are governed by (216) , (203c) and (203d) . When s=+ , the 

summations on m^ and m^ are restricted by (203e) and (203f); 

if L < ^]_£o''"^2£o ' value s=+ does not occur. When s=- , 

the summations on m^ and m^ are restricted by (203i) and 

(203]). In addition, 

M = -m^-smg . (220) 

This formula is essentially that given by Kinser, Salmon and 

Ruedenberg (1971). 

It should be recalled that the formula (217) is for 

unnormalized real Gaussian orbitals, defined by (162) and 

(143). All quantities contained in the formula are real. 

The factors depending on the orbital exponents have been sep­

arated from those depending only on the geometry of the cen­

ters and on the quantum numbers. The latter are all con­

tained in the geometry factor A. The sums in (217) can be 

evaluated efficiently by a nesting procedure. 

4. Simplifications when two or more centers coincide 

a. A=B In this case, the real orbital product on 

the left side of (164) reduces to a product of orbitals on 

the same center. A, and so does the product of complex orbi-
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tais on the right side. Furthermore, the point P of (145) 

coincides with A and B. Hence, the distance R^p is zero, and 

all terms in (148) vanish except those with £=e . This, to­

gether with (149b), implies that the only allowed value of n 

is This reasoning applies to both orbitals in the prod­

uct, so the definitions of (151b) and (153) show that 

a = 3 = Ô = 0 (221a) 

(221b) 

for complex orbitals. In addition, the quantity p defined in 

(156b) vanishes. Then, for the real product, the summation 

conditions of (168) become 

= 0 (222a) 

^l&O ̂  ^ &j^+2j^+&g=even 

^l£o " , I |m^|-|mgi | } 

(222b) 

(222c) 

nil = +|m^|-|inBl , 

-lm^|-|mg[, +|m^|+|mg|, if lm^l+|mgl<£^ . (222d) 

The conditions on and are given by (168e), (168f) and 

(170) . When the real form of the bipolar expansion, 

(186)-(188) , is substituted into the integral of (161), we 

find that only one value of e is needed, namely. 
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E = sign (m^) •sign (iTig) , with sign(O) = + . (223) 

This is so because terms having the opposite value of e 

include factors 

2z 

J d? sin(m$) cos(m'$) cos(m''(j)) = 0 . (224) 
0 

Instead of the range given by (195b), there are one or two 

possible values for 

•=1 = (""Uo '• "'ihi ' ' (225) 

with 

^l£o = i I ' ^'Ihi = * (226) 

When, in (219) , s=+ , the value = ni^hi d^es not occur if 

^Ihi ^ ^~^2£o * When s=- , the value does not 

occur if m,. < m_. -L , and = m,, . does not occur if 
l£o 2S,o 1 Ihi 

"^Ihi ^ ^^^Zhi ' Finally, since b^ = 0 , we have 

= 0 . (227) 

The integral is given by (217), along with (222a), (223), 

(225) and (227). The remaining indices are restricted, as in 

the case of the four-center integral, by (199a), (216), (203c), 

(203d), (203f) and (203]), if (222a), (222c), (226) and (227) 

are used. Furthermore, p^=0 . 
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b. A=B and C=D In this case, the Coulomb integral, 

similar conditions apply to the second set of indices, also. 

We have, in (217), 

= 52 = ^2 " ̂ 2 " ̂ * (228) 

Also, we have (223) and an analogous expression for n in 

terms of and m^ , and (225) and the same expression with 

subscript 1 replaced by 2. Moreover, when s=+ , m^ = n^2hi 

does not occur if mg^^ > L-m^ ; when s=- , m2 = '^2lo 

not occur if mu. < m.-L , and m„ = m_, . does not occur if 
2i6o 1 2 2hi 

^2hi ^ L+m^ . If all four centers coincide, we also have 

L = M = 0 , which implies and m^^ = m2 . 

c. A=C In this case, no simplifications occur in 

the two orbital products. However, we can simplify the 

expression for , (212), by taking advantage of the 

fact that the point A is one of the centers in each orbital 

product. Instead of using (208) , we decompose into only 

two vectors 

+ ^AQ • 

The result is 

L 

^2^'^ ^^^(ABAD) , (230) 

A=0 

where 
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Si = BAS/Z - , 5% = Rco/Z - b; (231) 

and 

^^(ABAD) 

A ^ 
I ^>11 -T.->-M-;i ̂ ®An'* (232) 
y 

Then, instead of (217), we have the integral formula 

^ = ®ab<'=I''I'®CD'P2'"2' Î Pi ^ 
=1 6l °1 

XÏ 72*2 I p ®2 J °2 ̂  X J g L-X 

^2 $2 °2 A L ^ 

*Xa6o)iO(o6a)2A^' 

and in the expression for A, (219) , the quantity -, is 

replacea by 

d. A=3=C This case, the hybrid integral, combines 

the simplifications of sections a and c. We have 

= Raq / = 0 , (234) 

so (230) becomes simply 

~ ̂ 2 ^0 (^^AAD) = ^LM^®AD'"^AD^ * (235) 



www.manaraa.com

84  

The integral is given by (233), with 

= 6^ = A = 0 (236) 

and (222c), (223), (225) and (226). In (219), the definition 

of A, the quantity ^ is replaced by . 

e. A=C and B=D In the case of the exchange integral, 

the points A, B, M, N, P and Q are all colinear. Therefore 

^^1 ^2^ ^LM^®AB''^AB^ ' (237) 

and the integral is given by 

I = ^a3^Pi''^1^^CD^^2''^2^ ^ "l ? ^ ^1 
*1 Gl °1 

a, S, a, "l ^2 I "2 1 ^2 I 'b -b^) 
"2 h °2 ^ 

In the expression for A, (219) , the cuantity LM 
*1*2 

replaced by YLM(8AB'^AB) ' 
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C. Discussion of Computational Methods 

1. Method of calculating integrals 

In any molecular calculation using a Gaussian basis set, 

it is necessary to use a number of Gaussians of each symmetry 

type (s, p, etc.) to obtain reasonable accuracy. Thus one 

must calculate many integrals with the same quantum numbers 

and centers, but different orbital exponents. Because of 

this, it is important to put the integral formula to be used 

in a form which permits as much of the calculation as possi­

ble to be done before the orbital exponents are specified. 

The results of these preliminary calculations can then be 

stored in some convenient way, and used repeatedly for dif­

ferent values of the orbital exponents. 

One can easily see that (217) is an integral formula of 

the desired type. The geometry factor A depends only upon 

the quantum numbers, the indices, and the geometry of the 

centers. Thus, for given geometry and quantum numbers, an 

array of values of A for all possible combinations of the 

indices can be calculated and stored in the prescribed way. 

The organization of the integral calculation is shown in 

Figure 2. First of all, the constant w^^^ , defined by 

(183), (150b), (7) and (8), depends only on its indices, so 

it can be calculated for all desired combinations of these 

indices and stored permanently. Then the first step in the 

integral evaluation is to read in the stored array for w. 
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start Get array w 

vl/ 

For each set of 2 
centers AB , 

For each sot of 2 
centers CD ^ 

For each set of 
QN ' s . 

Calculate P 

Calculate array ̂  using P 

Calculate G for 
all sets of QN's 

Calculate T, p, 
for all sets of ç 

For each set of 2 
ters CD 
DO; 

V 
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k 
Calculate array A 

using , w 

For each set of 

Calculate array f 

Calculate integral value 

/ End ^ 
all loops 

Stop 

Figure 2. Flow chart of integral calculation. Triangles indicate the beginning 

and end of loops 
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A program to calculate such an array has been written by 

Hubert Kinser. 

Now two of the atomic centers are defined, and an array 

of the quantities G, defined by (206), (194), (138) and 

(171b), are calculated for all needed quantum numbers (QN's) 

and all values of the indices a6o2m. This array is stored on 

a disk or tape, along with another array containing the num­

ber of G's for each set of quantum numbers . Next the 

quantities p, x, â, and b, defined by (156b), (156c), (218) 

and (213), are calculated and stored for all pairs of orbital 

exponents. Kinser has written programs to calculate and store 

these arrays. Now the array P, to be used in the evaluation 

of is calculated. These programs are called each time one 

of the centers A or B is changed. 

Next the other two centers, C and D, are defined, in such 

a way that CD is a pair of centers which has already occurred 

as AE; the quantities G, p, x, â, b and P will thus be avail­

able. Now that all four centers have been specified, the 

quantity defined by (214), or defined by (232), can 

be calculated and stored for all required values of its indi­

ces. (Since the dependence on the quantum numbers is con­

tained only in the limits on the indices, one simply calcu­

lates the maximum number needed and uses them repeatedly.) 

Programs to calculate this array have been written by the 

author. These functions must be calculated each time any of 

the four centers is changed. 
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At this point tho quantum numbers (QN's), and , 

are defined, and an array of the functions A, given by (219), 

is calculated for all values of the indices, using the arrays 

w, and G. The author has written programs to perform 

this calculation. It must be done each time any of the quan­

tum numbers is changed. 

After the geometry factor A has been computed, the orbi­

tal exponents ç are defined. The functions f, defined by 

(182), are calculated for all values of the two indices; pro­

grams to do this have been written by the author. Note that 

each f will occur in several terms of the summations to be 

performed. Finally, the integral is calculated according to 

(217), using the stored values of p, i, â, b, f and A. A 

program for this has been written by Kinser. These two steps 

must be repeated each time one of the four orbital exponents 

is changed. 

All programs were written in Fortran IV for the IBM 

360-6 5 using double precision arithmetic. 

2. Calculation of f 

The functions under consideration are defined by (182). 

There are two cases, which must be handled separately. The 

first case, v = L , is given by (182a), which is repeated 

here 
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f^^(p^,a) = a L 1/2 r(L+l/2)Y*(L+l/2,p^) 

= a ^ 1/2 p 2L 1 Y(L+i/2,p2) _ (239) 

The following recursion formula (Abramowitz and Stegun, 1965, 

Item 6.5.23) will be used: 

r(L-l/2)Y*(L-l/2,p2) 

= [p2 r(L+l/2)Y*(L+l/2,p2) + exp(-p2)]/(L-l/2). (240) 

Because both terms on the right side of this formula are 

always positive, there is no loss of significant figures if 

the recursion is done in the direction indicated, that is, 

downward. On the other hand, if upward recursion is used, 

significant figures will be lost; the severity of the loss 

2 depends upon the argument p 

In order to recur downward, we must have an efficient 

way to calculate the function with the highest value of L 

which will be needed. To develop such a method, we will use 

the following series expansions(Abramowitz and Stegun, 1965, 

Item 6.5.29): 

i(a)y*(a,z) = 7 (-z)"/(a+n)nl 
n=0 

= r(a)e ^ 2 zVr(a+n+l) . (241) 
n=0 
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The first series is used to obtain the expression for the 

derivative 

which is substituted into the Taylor series expansion to give 

To use this formula, one needs to have available a table of 

values of F(L+1/2)y*(L+1/2,z) for as many values of L as 

required, and for values of z spaced closely enough so that 

only a few terms are needed. It was found that with an 

increment in z of 0.01, only three terms are needed to pro­

vide acceptable accuracy (at least eight significant figures). 

The table is generated by calculating the function for the 

largest L by means of the second series of (241), and then 

recurring downward with (240) ; this is done for each value of 

z up to some maximum value. The table is computed once and 

stored permanently by the program TABGAM (Program 1 of Appen-

2 dix B). For very small values of p ( < 0.325), it is prac­

tical to use the second series of (241) to calculate the ini­

tial function for the recursion, rather than the Taylor 

series (243). The initial function for downward recursion is 

calculated by one of these two methods by the program GAMT0P 

(d/dz) [r(a)Y* (a,z)] = -T(a+1)y*(a+1,z) (242 )  

r(L+l/2)y*(L+l/2,p2) 

p2-z)* r (n+L+l/2)y* (n+L+l/2,z) . (243) 
n=0 
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(Program 3) . 

It is not possible to store the table of r(a)y*(a,z) 

2 for values of z up to the largest value of p that would ever 

be needed. Therefore, some other method of calculating f 

must be used for large values of p~ . If p is large enough, 

and if the maximum value of L is small enough, then one can 

recur upward using (240), without unacceptable loss of pre­

cision. For example, if p > 4.0 , less than three signifi­

cant figures will be lost in an upward recursion with maxi­

mum L less than 29. The initial function needed is 

(Abrainowitz and Stegun, 196 5, Item 6.5.16) 

r(l/2)Y*(l/2,p2) = /Y erf(p)/p , (244) 

where erf(x) is the error function (Abramowitz and Stegun, 

1965, Item 7.1.1). For large values of p we can use the 

asymptotic expansion (Abramowitz and Stegun, 1965, Items 

7.1.2 and 7.1.23) 

/ïï erf (x) 

/ÎT - [exp(-x^)/x] 2 (2m-l) ! ! (-l)^/(2x^)™ . (245) 
m=0 

It was found that no more than four terms are required to get 

fifteen significant figures, when p k 4.8 . The calculation 

of the function of (244) , using (24 5), is done by the program 

GAML0W (Program 4). 
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When p = 0 , the only f's which are needed are those 

with L = 0 ; this is because the function vanishes 

for all other cases. It is obvious from (241) that 

r(1/2)Y*(1/2,0) = 2 . (246) 

2 Once r(L+1/2)Y*{L+1/2,p ) has been computed for each 

needed L, it is multiplied by the necessary factor to get 

f^^ of (239) . 

The second case for , v = 2N+L , with N a positive 

integer, is given by (182b), which is repeated here 

^2N+L 

^ a-N-L-1/2 (N-i) >exp(-p^)Lj^._^^^^/^ (p^) . (247) 

These functions are computed by means of the recursion for­

mula (Abramowitz and Stegun, 1965, Item 22.7.12) 

(n+l)L ,T^(x) = (2n+a+l-x)L ^(x) - (n+a)L ,^(x) (248) 
n+J. n n—JL 

and the initial functions 

Lq^(x) = 1 and L^^Xx) = 1+a-x . (249) 

This recursion scheme is stable in spite of the occurrence of 

subtraction. 

The possible combinations of the indices v = O2+&2 
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L are limited by (216c) and (216d). Thus the f's form a tri­

angular matrix. However, to save both space and time, they 

are stored in the computer as a singly dimensioned array, in 

rne oraer 1 
"1 fg , etc. The number -Q ' -1 / -2 ' "2 

of f's depends on the maximum value of v and L, which is 

(250) 

we have for N_ , the number of f's. 

= < 

<%ax"3)/4 for odd L max 

for even L max 

(251) 

The array of f's is computed by the program FLNRH0 

(Program 2). This program calls GAMT0P and GAML0W. Times 

for the computation of the array f^''^ are given in Table 1. 

3. Calculation of and 

These functions are defined by (214), (232) and (215). 

In order to obtain a form more suitable for calculation, we 

substitute into (215) the definition of the spherical har­

monic to get 

(252) 

with 

1 
(-1) 

1 

m , if m > 0 

, if m < 0 
(253) 
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1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Times for calculation of array f 

Time in msec. Time in msec. Time in msec. Time in msec. 

(p2=0) (0<p^^0.325) (0.325<p^$23.044) (p^>23.044) 

0.16 0.66 
0.35 0. 66 
0. 35 0. 82 
0.35 0.82 
0.35 1.02 
0. 35 1.17 
0.35 1.52 
0.51 1.68 
0.51 1.99 
0.51 2. 34 
0.66 2.85 
0.66 3.52 
0. 82 3.67 

0.51 0.66 
0.66 0. 82 
0. 82 0. 82 
0. 82 0. 82 
1.02 1. 17 
1.17 1.17 
1.52 1. 52 
1.33 1. 84 
1.99 1.99 
2 . 34 2. 34 
2.85 2.85 
3. 52 3. 32 
3.82 3. 82 
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and 

m P^"'(0) = ' (cosG)//Jtt (£+in) I (254) 

where is the associated Legendre function (see, e.g.. 

(Edmonds, 1957, p. 22)). This expression for is substi­

tuted into (214) three times; each term of the result con­

tains a product 

exp î i (M-U^-Ug) ^ 

(255) 

where 

*ABCD ^1*AB ^2*CD ^1 ^2^ *MN 
(256) 

Then we have 

(Re, 1 
, ""'(ABCD) LM , ^2 _ ^ ̂ 1 ^2 

c^J ^1/2 

*1 I j >T 

^1^2 1^1 

(257 )  

with 
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The limits on the summations in (257) are given by (210). 

When M=0, the result simplifies somewhat. In this case 

the limits of (210) become 

^Imax - - "^^imax 
(259a) 

"imax = (259b) 

^2min(^l) ^ ̂ 2 ^ '^2inax^^l^ (259c) 

^2min(Ul) = maxt-A; , -Wi-L+Ai+A-,} 

U2max(^l) = min{+A2 , 

(259d) 

(259e) 

It is clear from the last two equations that 

^Zmin^^l^ ^2max^ ^1^ 
( 2 6 0 )  

Now, defining * = ~^2 ' using (260) and (253), and the 

properties of the sine and cosine functions, we obtain 

^2l J ^'1^2 ^1'"^^ 
. = Î ^ IT. 

2 dWj ^l'^2 
(261) 
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dropping primes in the last step. Hence we can sum over only 

nonnegative values of . We find 

^°(ABCD)] = 0 
L A p. 2 J 

(262) 

as expected, and 

X. L—A, —X, 
j = 2.(-l)"2 "1 "2 

U, imax 

2 (1+Ô q) 2 , (263) 

^2=0 1 u-

in which the sum over governed by 

^2min^ ^1^ - ^2 - ^2max^ "*^1^ 
(264) 

When L=Aj^ = A2 = 0 , we have 

00 

<!k% j 
00 

(ABCD) = 
l//27r 

(265) 

Furthermore, when either = 0 or L = sum on 

1^2 reduces to one term; when either A^ = 0 or L = A^ , the 

sum on reduces to one term. 

For the four-center case (A, B, C, D all different), 

these results are used by the program MUSUM4 to calculate 

^ . It calls other programs TRIGS, which calculates 
*1*2 
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and stores all of the sines and cosines which will be needed, 

and PLMBAR, which calculates and stores the functions P of 

(254) . These programs are given in Appendix B as Programs 

5, 8 and 11, respectively. The s are stored as a singly 

dimensioned array. The number of them depends upon the maxi­

mum value of L, , which is given by (250) . Using the 

fact that there are (2L+1) functions for each combination of 

L, , ^2 (one for M=0 and two, the real and imaginary 

parts, for all other M) , we find for N. , the number of %'s, 

For example, if we have four d-orbitals the number is 2145. 

The three-center cases are handled by the programs 

MUSUM3, TRIG2A and TRIGl, Programs 6, 9 and 10, respectively. 

This function was defined by (232), but, using the same rea­

soning as above, we can derive 

( 2 6 6 )  

For the case A=B, %Q^^(AACD 

suits above. For the case A=C 

(AACD) is computed, using the re-

s A=C, %^^^(ABAD) is computed. 

%^^(ABAD) = /2¥ (-1)^ I 
y 

(267) 

where 

(268 )  
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Table 2. Real times for calculation of array 

^ Time in sec. Time in sec. Time in sec. 
max (2 centers) (3 centers) (4 centers) 

0 0.001 0.009 0.002 
1 0.012 0.014 0.002 
2 0.005 0.036 0.012 
3 0.011 0.044 0.041 
4 0.010 0.135 0.104 
5 0.014 0.116 0.222 
6 0.017 0.169 0.423 
7 0.025 0.227 0.632 
8 0.030 0.467 1.053 

10 2.793 
12 5.613 

The summation is governed by (210a) and (210b), without the 

subscripts. 

The two-center cases are handled by TRIGl and MUSUM2, 

Program 7. As we have seen, each of these three cases re­

duces to one spherical harmonic. 

Times for computation of an array of ^'s are given in 

Table 2. These are real times obtained under multiprogram­

ming, and thus represent upper bounds on the actual times. 

4. calculation of A, 

The geometry factor. A, contains all quantities in the 

integral formula which do not depend on the orbital exponents. 

The definition of A, (219), will be put into a different form 

for computational efficiency. First, in view of (203c), 



www.manaraa.com

101 

^1 *^1 (-1) ^ = (-1) -L (269 )  

The order of summations is changed from 

I I I I I I I to I I I I I Z I 
&2 s #2 E n c ^2 ̂ 2 s n 

The limits on and > given by (203c) and (203d), are not 

changed by this procedure. Those on and m2 become 

^l£o ^ ^ mm m Ihi 
(270a) 

^ïmin S ̂ 2 s minV 

L+m, 

with 

(270b) 

m 
2lo 

m, 2min 

if m^ i ^"®2Jlo 

maxImg^Q , m^-L} if > L-m 2£o, 

(270c) 

The other conditions of (203) give restrictions on which val­

ues of s (+ and -) may occur. 

Terms with m^=0, ̂ 2~^' both assume a much simpler 

form than the other terms, so they are treated separately. 

It has already been shown that when m^=0, the index e can 

only be + , and when #2=0, n can only be + . By using (177) 
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and (179) , together with the symmetry properties of the 3-j 

symbols contained in w , it can be shown that if 

either m^=0 or m2=0 the terms with s=+ and s=- are equal. 

These results are combined to give the following new 

form of the formula for A, in which the indices a, 6, o, X and 

L have been omitted for brevity: 

= 0 0+ % Snm(O) 
i&o ^1" a. 

+ I I ^ c % sum(m^) 
m^ E 1 1 ^2 

(271) 

with 

and 

Z)iO Z 

, m_ ^ Lm^ 
* I w ^ ^ (-1) I s n. I (272) 

m_ ^ n 2^'2 

£,Jl^m 0 m, ^ Lm-
Sum(mi) = 5^^ ^ (-1) ^ ) 

2£,0 Z 

+ I I ^ 1 2 I s,__ \(e,n) 
mg s n (amz) 

xG 
^2^2 en 

R. (^™) (273) 
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As before, M is given by (220); ]] is % without the term 
m m 

with m=0. 

In the derivation of the orbital product, certain re­

strictions were found on the indices and (170). The 

sums over these indices are included in the function G. 

Hubert Kinser (private communication on the summation condi­

tions, 1970, Iowa State University, Ames, Iowa) has shown 

that these restrictions lead to additional restrictions on 

the indices and e; similar restrictions apply to m^ and n. 

These restrictions will be expressed with the aid of the fol­

lowing definitions: 

(274a) 

0 otherwise 

either |m^l>jmg| and m^lMINA 

or |mg|>lm^[ and m^^MINB (274b) 

or jm^j=jmgj and m^^(MINA.OR.MINB) 

Ô 3 

m, iMINB 

(MINA.AND.MINE) 

m^ <MINA (274c) 

0 otherwise 

MINA = inin{£^-jnig I-a^ , 32_+1I - [ } (274d) 
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MINE = min{£g-im^l+a^ , 1]+|1} 

A particular value of will not occur if either 

(274e) 

6^ = Ô2 = 1 and min{ {m^| , (275a) 

or 

Si = ^2 = 0 (275b) 

In addition, the value m^=0 will not occur if either 

6^ = 0 and sign(m^)•sign(m^) = - (275c) 

or 

Oi = 0, 63 = 1, |m^| = Inigl, and sign (m^)-sign (itig) = -

The restrictions on z are as follows: 

(275d) 

If 3;l = 0; 

or 62 II O
J 

W
 II 0
 

and = 

or 6^ = 63 = 0 and = llmal-lmgll ; 

then e = sign(m^)• 

If Ô2 = : 1 and Ô3 = 0 

and 

m^SMINA, 

I^A'^'^B' m^=lMMAX|, 

£ 

E 

e 

(276a) 

sign(m^) 

sign (nig) 

sign(MMAX). (276b) 
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If 62 = 0, = 1, and = |MMIN| > 0, 

then e = sign(MMIN) . (276c) 

Here MMIN is whichever of and has the smaller absolute 

value, and MMAX is whichever has the larger absolute value. 

We take sign(O) = + . These conditions, (275) and (276), are 

taken account of by the program DEL (Program 15), which de­

cides whether a given value of occurs, and, if so, which 

of the two values of e can occur. 

There are three programs for calculating the array of 

A's. GE0M4C (Program 12) performs the calculation for all 

integrals having two two-center orbital products, that is, 

[X^^XbIXcXq] = [AB|CD], [ABIAD] and [ASjAB] . GE0M3C (Program 

13) is for the integrals with a one-center orbital product 

and a two-center orbital product, [AAjCD] and [AA|ad]. 

GE0M2C (Program 14) is for the Coulomb integral, [AA|CC], 

with two one-center orbital products. These programs call 

DEL, mentioned above, and J0MG (Program 16), which determines 

the subscript for the constant w. The programs incorporate 

the simplifications of section IV.B.4 where appropriate. 

The A's are stored as a singly dimensioned array in the 

order in which they are to be used in the integral calcula­

tion. The number of functions depends upon the quantum num­

bers ; maximum values are given in Table 3 for certain combi­

nations of Z quantum numbers. (Since the number also depends 

on the m's, the number will be somewhat smaller than the fig-
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Table 3. Calculation of array A 

Maximum Time Time Time 
array in sec. in sec. in sec. 

^3 ^C size (GE0M2C) {GE0M3C) (GE0M4C) 

0 0 0 0 1 <0.02 0.02 0.01^ 
1 0 0 0 4 <0.02 <0.02 O.O2J 
1 1 0 0 15 <0.02 0.02 O.O3J 
1 0 1 0 14 0.02 0.02 0.02* 
2 0 0 0 10 <0.02 <0.02 0.02* 
1 1 1 0 48 0.02 0.12 0.07 
2 1 0 0 37 0.02 0.02 0.05 
2 0 1 0 33 0.02 0.05 0.05 
1 1 1 1 158 0.02 0.23 0.29 
2 0 1 1 108 0.02 0.13 0.20 
2 2 0 0 89 0.02 0-02 0.15 
2 1 1 0 112 0.04 0-12 0.22 
2 0 2 0 74 0.02 0-04 0.10 
2 2 2 2 3548 0.05 1.97 9.78 

^Real time 

ure given for certain combinations of m's.) Computation 

times for the three programs are also given in Table 3. 
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V. QUADRUPOLAg EXPANSION AND INTEGRALS 

OVER SLATER-TYPE ATOMIC ORBITALS 

- 1  
In section II a new bipolar expansion for r^2 was de­

rived, which contains the coordinates of the first electron 

with respect to one center P and those of the second electron 

with respect to another center Q. This expansion was used in 

section IV to derive a formula for integrals over Gaussian 

atomic orbitals. Now we will transform this bipolar expan­

sion into a "quadrupolar" expansion, containing the coordi­

nates of the first electron with respect to two centers A and 

B, and those of the second electron with respect to two other 

centers C and D. The transformation is based on Steinborn's 

(1969) "multipolar" expansion of regular solid harmonics-

The quadrupolar expansion will then be used to obtain an 

asymptotic expansion for integrals over Slater-type atomic 

orbitals. 

A. Quadrupolar Expansion 

1. Transformation of A (r_/a) p 

The quadrupolar expansion will be derived from the bipo­

lar expansion (23) by a transformation of the quantity 

Ag(rp/a) into a function of two vectors, r^/a and r^/a. 

The definition of Ag(r) was given by (26) and (15), but we 

shall now write it in a form more convenient for our present 

purpose: 
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A (r) = 5^^^$)L^^+l/2(r2)/2%[2(n+&)+l]lI . (277) 

Here (r) is the solid spherical harmonic defined by (185) , 

(2p+l)! I is given by (16), and L^^(x) is the generalized 

Laguerre polynomial, which is defined by (17) and has the 

explicit form (Abramowitz and Stegun, 1965, Item 22.3.9) 

Ln^(x) = ̂  [(-1) Vtl(n- t )  I] [ r(n+a+l) / r( t+a+l)]x^ (278) 

In order to perform the transformation on A, we must 

require P to lie on the line AB: 

PB = £ÂB , PA = (l-c)BA , 0 ^ ^ 1 - (279) 

No Other restrictions will be imposed on the relative posi­

tions of A, B and P. The coordinates used are shown in 

Figure 3. The coordinate systems on A, B and P are parallel 

to each other. Note that the AB-direction does not necessar­

ily coincide with any axis - In addition to the symbols intro­

duced in Figure 3, we define as the distance between the 

points A and B, and we will use the ratio £ of (279). The 

point E denotes the position of the electron. 

Consider first the Laguerre polynomial of (278) . Appli­

cation of the Law of Cosines to the triangles AEB and either 

AEP or BEP (see Figure 3) yields 

rp^ = er^^ + (l-Or^^ - E(l-c)R^^ . (280) 
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Figure 3. Coordinate systems on centers A, B and P. Axes are parallel to each 

other. Spherical coordinates , ®AB ' *^AB defined with respect to center A 
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Substitution of this identity into (278) [with x replaced by 

2 2 (rp /a )] and two applications of the binomial expansion 

gives 

n t r 

£+1/2 2 2 _ y y y 
- à) r=o 3=0 Lnt«+3/2) 

X (-1) 
't\ I r\ 

2s 2r-2s 

I 

2s 

a [a J 

X eSfl-e)^ s £(1-e) 
R, AB 

t-r 

(281) 

A rearrangement of the summations in this equation yields 

n r 

L ^l/2(r 2/a2) = 22 (r /a)^^ (r /a)2r-2s 
^ ^ r=0 s=0 ^ * 

X(-1)^( I e®(l-e)^ ® G^^^[£(l-e) (R^g/a)^] (282) 

where 

='•"•'01 (1 r(n+&+3/2) 
r(t+r+&+3/2) (283) 

Next, consider the solid spherical harmonic. Steinborn 

(1969) has shown that 
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= 22°"°" ' (284, 

A=0 y 

where is defined by (150) and the limits for y are 

max{-X, À-£+m} < y < min{X, -A+£+m} . (285) 

This leads directly to 

= 22 .ra-p ' V^' ̂Xp<V®' Qu"" " 

^ (286) 

By substituting the three expressions (282) , (286) and (185) 

into (277) one obtains 

Ag(?p/a) = Ag(s, R^g/a, ?^/a, î^/a) 

n r i 

2 2  22  Crsx"' (C'  
r=0 s=0 X=Q y 

X '237) 

where 
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= (-1)^1 i{2"l2(n+&)+l]!!} ^ 

X Gr**[E(i-E)(Ra2/a)2]eS+&-A(i_E)r s+X (288) 

and the limits on y and the quantities £, and (x) 

are given by (285), (279), (150) and (283), respectively. 

2. Expansion for r^^ 

Now the expression for A is substituted into the bipo-

lar expansion (23), and a quadrupolar expansion of r^2 is 

obtained : 

= 12 ^ ^ ^ ^q q^%'Q'^l'^2^ 
Si 2 ^2 

* 

X Rcg/a;, îc2/^2' ̂ 02/^2' '2S9' 

with Ag given by (287) and (288) and W by (25), (7), (8), 

(181) , (182) and (22) . Notice that the position of the first 

electron is specified in terms of the centers A and B, and 

that of the second electron in terms of C and D, but the fac­

tor W, which is independent of the electronic coordinates, is 

still a function of the two points P and Q. There are four 

parameters in this expansion which one is free to specify in 
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some convenient way: and , the scaling parameters; and 

and , which fix the positions of P and Q on the lines 

AB and CD, respectively. 

Since the guadrupolar expansion was obtained from the 

bipolar expansion by introducing a finite expansion for each 

term, the nature of the infinite series is not changed, so 

the new expansion converges because the bipolar expansion 

does. 

B. Asymptotic Formula for Integrals over 

Slater-type Atomic Orbitals 

1. Asymptotic expansion 

Now we will use the guadrupolar expansion to obtain a 

formula for the integral 

I = /dVj^ /dV^ Xc*<2)XD(2) , (290) 

where 

is a Slater-type atomic orbital on center A defined by 

Xg(5r) = 2**1/2 s3/2[(2n),]-l/2(;r)n-l . 

(291) 

The symbol q denotes the set {n,&,m}. As before, we take the 

Cartesian coordinate systems on the atomic centers A, B, C, 
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and D to be parallel to each other, but none of the coordi­

nate axes is assumed to be parallel to any of the internu-

clear axes. 

Substitution of either (289) (quadrupolar expansion) or 

(23) (bipolar expansion) into the integral (290) followed by 

interchange of summation and integration, leads to 

I ~ I I Vq -^''3C''3D''52' • 
q, qp 12 
^ ^ (292) 

The are overlap-type integrals defined by 

^(q^'qe'^l^ = JdVi XA*(l)XB(l)Aq^(Zpi/ai) , (293) 

and A is given either by (287) and (288), or by (277) . As 

was pointed out by Silverstone and Kay (1969) and Ruedenberg 

and Salmon (1969), the interchange of summation and integra­

tion is not proper in the case of Slater-type orbitals, and 

the expansion of (292) is asymptotic (see, e.g. Whittaker and 

Watson, (1927, Ch. VIII)). This means that it is divergent, 

but the first few terms may be taken as an approximation to I. 

The accuracy of the approximation is greatest when the orbi­

tal exponents are all large, or equivalently, when the inter-

nuclear distances are large. Thus the expansion may be use­

ful, especially for integrals involving relatively distant 

centers. Since only a few terms would be needed in such 

cases, it is expected that the method would be quite effi­
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cient. In view of this, we present here a method for evalu­

ating the terms of the expansion, (292). The results of the 

previous section will be used to evaluate the functions -J 

explicitly. 

2. Expression for ^ in terms of overlap integrals 

Since, by virtue of (287), all factors occurring in 

have been expressed in terms of coordinates centered at A and 

B, it is now possible to express -<J as a sum of standard 

overlap integrals. To this end, we substitute (287) and 

(291) into (293) . The result contains products of the form 

* 
y 

which can be expanded by means of the formulas (Edmonds, 

1957, p. 63, Eg. 4.6.5) 

* 

A A 

= (-1)̂  ̂I [(22-2X+1) (22̂ +1) (2X̂ +1)/4n] 1/2 

^A 

Si-X \l z-x * 

^X^ ,m^+]i-m^®A''^A^ 
m-y -m m^+y-m/l 0 0 Of A' A 

^ ^ i (294a) 
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= 2 [(2X+l)(22g+l)(2Ag+l)/4n]l/2 

^ ^B ^B 

nig \ 
1 

with the summation conditions 

£—À—£^1 i £. S,-X+2,^+Aa = even (295a) 

X-Agi i Xg S X+Ag X+5,g+Ag = even (295b) 

By virtue of these equations and of (287) , the definition 

(293) for becomes 

^ ( q ^ / q B ' q )  = 1 1 1  
r s X y 

_ my 

xl I [ (2A-2X+1) (2X+1) (2^^+!) (2£g+l) (2X^+1) (2Xg+l)] 
1/2 

Jl X \lz X SL^ Xj^j 

^m-y -m^ m^+y-mll 0 0 0 

X ^B ^B ^ ^ ^B ^Bl 

0 0 0 

rsX 
-^A ' ̂B ' ̂A"^^ ' U+MB 
^^A+2s+A—X,ng+2r—2s+X 

(296 )  
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where 

^AB (297) 

ana 

n2n n i /? 
(EfP) = {[2(n^+2s+£-X)] ![2(ng+2r-2s+X)] 

x { ( 2 n ^ ) I ( 2 n g ) p 2 r + *  C * * ^ ( E , p )  

( -1 )^1  l {2"[2(n+£)+l ]  ! ! }  ^  

x{ [2 (n^+2s+il-A) ] I  [ 2  (ng+2r-2s+X) ] ! 

x { ( 2 n ^ ) ] ( 2 n g ) [ e ( 1 - e ) p ^ ]  

^^s+£-A(i_^)r s+A p2r+A _ (298) 

The summation limits used in (296) are given in (295), (285) 

n p 
and (287) . The functions (x) are defined by (283) , and 

Snn'"'™' XA*(l)XB(i) 

denotes an overlap integral between the Slater-type atomic 

orbitals of (291) defined in terms of the A and B coordinates 

shown in Figure 3. It should be recalled again that, in gen­

eral, the internuclear axis is not parallel to any of the 

coordinate axes. Consequently, S is not a standard overlap 
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integral. 

However, since the coordinate axes on A and B are paral­

lel to each other, it is possible to express S in terms of 

standard overlap integrals S by virtue of the following iden­

tity (Steinborn, 1969) 

i I (ir !)(! r. If 

x(-l)M+m(2-aMo)[4n(2A+l)]l/2 S^i^(p^,pg) , 

(299) 

where the sums are given by 

0 < M < min{£, 2,*} (300a) 

max{ j £ - £ ' l ,  |m-m']} < A < l+l' l+l'+A = even (300b) 

P O ' M  — 0 0  ' M M  
The standard overlap integral is defined as , 

but with the condition that and are all parallel 

to each other. Substitution of (299) into (296) yields the 

desired expression for in terms of the standard overlap 

integrals 

n r £ n£n n 

= Jo Jo Jo LU 

M 

^^n^+2s+£-X,ng+2r-2s+X 
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where the conditions on the suiamations over and are 

those given by (295) and the limits on the M-sxunmation are 

0 < M ^ min{A^, (302) 

Moreover, the following quantities have been used in (301) 

= (-l)^(2-5^()) I (-1)"^"^ 
A 

X [ (2A+1) (22+1) (25,^+1) (2Ag+l) (2A^+1) (2X^+1) ] 
1/2 

& m * 
(303) 

Ami? £ in m I l+m 
J- A n A c r f ,^ = I 

P \^~M/ 

jL-in\ Iz+wi) 
lA-yi \A+p 

1/2 

^A y ̂ ^ ^A ^Al 

^m-y m^+y-m/l 0 0 0 

^ ^B Y ̂ ^B ^B] 
^ y mg -y-BgA 0 0 0 

B A 

m-y-m^ y+m^ m^-m^-m] - M M  0 ;  
(304) 

where the summation over y has limits given by (285), and 

that over A is limited by 

max{|A^-Agl, |m-m^+m^|} < A < A^+A A B 'A "B 
(305a) 

A^+Ag+A = even (305b) 
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3. Explicit dependence on and £g 

Although (301) could be used as such, a more useful form 

can be obtained by applying the explicit expression obtained 

by Silver and Ruedenberg (196 8, Eqs. 23-28) for the overlap 

integral, namely: 

n+n ' 

% 'PA-^b'" (PA+PB'"' 
V=0 w' (306) 

•where the limits on the summation over w' are 

max 1 |£-£'l-vf < w' < n+n'-m 

v-Z-Z' 

The quantity f^ is defined by Eq. 24 of (Silver and Rueden­

berg, 1968), and A is defined by 

A^, (nn'Ji£'m) = (-1) 
Z+Z' (2&+1) (2&'+l) 

Z+iri 

m , 

Z '+m\ 

m 

-11/2 

1 M.  xr:: 
(n+n • - W ' )  i  

2v' 
nln'I Ai 

3^, (nn'££,'m) (307) 



www.manaraa.com

121 

Note that A and B, defined by Eqs. 29ff of (Silver and Rueden­

berg, 1968), depend only on the indices v and w' and on the 

arguments nn'Jlfi,' and m. The formula of (306) differs from the 

expression of Silver and Ruedenberg (196 8) by the factor 

(-1) because our Zg axis points in the direction opposite 

to that of their axis. Insertion of (306) into (301) 

yields the following result: 

0 
Jd(qA'gB'^^ = (2pa/Pa+Pn) K' 

«3+1/2 

n£n n £m£ £ m m 

rsX '-'"AB' 

X A^, (n^+2s+&-X,ng+2r-2s+À,X^,Àg,M) (308) 

where 
I 

denotes the summations 

n r X/ 
2  = Z  I  I  I  I  I  1 1  

r=0 s=0 A=0 Ag M v w' 

with the limits 

0 < v < n^+ng+2r+& 

0 1 

max V ^Bl"^ " < w* < n^+ng+2r+2-M 
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The limits on Ag and M are given by (295) and (302) 

Interchanging summations, one can also write 

y = i i i i  I  I I I  
^ V r w' A s=0 Ag M 

with the limits 

^ V ^ n^+ng+2n+£ 

max 4 £ r ^ n 
t (v-n^-ng-£+l)/2]| 

mod(v+£+£^+£g, 2 )  

m a x  S  I | - 2 - v  

v-a-aa-Aa 

i w' i n^+ng+2r+5. 

max{0, (2-k+Mod)/2} < A < min{£, (Jl+k-Mod)/2} 

A-A-&, 

max 
A—Jig — V—w ' +Mod 

Jlg-A-v-w * +Mod 

v-Jlg-A-w'+Mod 

> < A^ < min< 
&-A+&, 

|v+w * +A+&_-Mod 
L ^ -

} (309a) 

x-a B 
max A. A^-v-w ' +Mod 

v-w'-A^+Mod 

^ Ag 3 min' J A+2 B 

|v+w'+A -Mod 
L "A. ^ 

(309b) 
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0 ^ M ^ mi i 
X A (309c) 

£-ÀT£^+À^ = even X+£g+Xg = even (309d) 
A A 

The following definitions have been used: 

1 for n=odd 
mod(n,2) 

0 for n=even 

Mod = mod (v+w'+Jl+fi-^+ilg, 2) 

[x] = largest integer < x 

k = v+w' + £^+2,g 

Next the index w' is replaced by a new index 

w = w'-2r-£ , 

which is the power of the quantity (p^+p^) in (308), and 

the index s is replaced by a new index 

o = s+£-A , 

which is the power of e in (298). The last step consists 

of rearranging the summations into the following order: 

y = I  I  I  I  I  I  I  I  
^  v w r  a  A  X g  M  



www.manaraa.com

124 

The final result of these manipulations is the formula 

0 n +1/2 
Jà (q^,qg,q) = (2p^/p^+p^) A' <2Pb/VB'  

nB+1/2 

V w 

(310) 

where the limits on v and w are given by 

0 ^ V ^ N^+NG+2N+£ (311a) 

mod(&+&^+&g+v, 2)-2n-& 

max \ |&^-&g|-2&-v-2n 

v-&^-&g-2&-2n 

^ w < n^+ng (311b) 

The function K is discussed in the next section. Note that, 

since K does not depend on the orbital exponents, only two 

summations need be redone for each variation of the wave 

function. 

4. Expression for K 
—vw 

The transformations described in the preceding section 

yield the following definition for K 
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Kyw(E,p,6,*) 
n&n_n_ 

X +M £m2, £ m m 

X w+2r+Jl (312) 

with the summation limits 

[ (v-n^-ng-^+l)/2] 

max [-w-2+Mod+mod(v+&+2^+&g,2)]/2 

[ 1 &^-2g| -2Jl-v-w+Mod] /2 

V ^ r ^ n 

[v-w-2 -&^+Mod]/2 
A o V 

(313a) 

max- >^a^min< 
[_v-w-2r-il̂ -£g+Mod] /2j 

£+r 

£+2r+ [v+w+Jl^+£„-Mod] /2( A a 

max 

0 

Z-o ^ r 
•^X^min 

[-v-w-2r-£^-£g+Mod]/2 

(313b) 

Z 

Z+r-a T 

r+Jl+ [v+w+Ji +£ -Mod] /2J 

(313c) 

The limits on Ag and M are given by (309a)-(309d), but 

with w' = w+2r+£ , and Mod now denotes mod(v+w+£^+£g, 2). 

The expressions of (298), (303) and (307) can now be intro­

duced for F and A. If the summation on K, which occurs 
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in (303), is brought outside of the summations over X, X^y 

X^ and M, one obtains the final form of K 

K^(£,p,e,(|)) = I (-1)^ Gy**[E(l-E)p2]p2r+* 
r 

•-l (l-E)A+r-° I (-1)°'''°^ 
a A 

vwraA 

(314) 

where the limits on r and a are those given by (313a) and 

(313b) and the limits on A are 

A^ < A ^ Ag (315a) 

A, = max 

1m-m^+MgI+mod(m+m^+mg+ 2 )  

I 

A-2 -&B-2(&+r-o) 

v-w-2r-Jl-2 (£^+a)+Mod 

v-w-2r-£-2(&g+2+r-o)+Mod 

(315b) 

A2 = min -s v+w+2r+il+2 (S,^+a)-Mod 

/ v+w+2r+£+2(&g+2+r-a)-Mod 

(315c) 

l+l^+l^+A = even (315d) 
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The function (x) was introduced in (283) and the constant 

T, which depends only on quantum numbers and summation indi­

ces, is defined by 

vwraA 

(2A+1)(2&a+l)(2Ag+l)(2A+1) 

(2n^)!(2ng) 

1/2 

2^[2(n+5.)+l] II 

X I  I I I I  (-1) ^ (2X^+1)(2Xg+l) 
X xa+X-iJ 

X[(n^+ng-w)1/ :... ! .=;y-
M M / \M 

B 

M 

1/2 

Bv,w+2r+a (n^+2a-£+X ,ng+2£+2r-2a-X, X^, Xg,M) 

with the limits 
(316) 

X. 3 X Z Xg (317a) 

^ 0 

Z-a 

X, = max [-v-w-2r-£^-fi,g+Mod] /2 

/2 

[Iv-AI-w-2r-£-2£g+Mod]/2 

(317b) 
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a 
l+r-a 

= min S,+[v+w+2r+£^+£g-Mod]/2 

[A+2+2^+&g]/2 

{ [ |v-A j+w+2r+£-Mod]/2}+il+£ 

(317c) 

A 

|£—A-Jl, 

I -v-w-2r-fi,+Mod 

\ v-X-&g-w-2r-&+Mod 
max < ^ 

ll-Jgi-A ' ^ 

r &-X-A 

V+W+ 2r+Jl+X+Ji„ -Mod 

A—X—Z 
V. A+X+Z 

B 
B 

[ 1 v-A I -w-2r-S,+Mod] /2 (317d) 

X-l B 
x+x 

max A A-X A 

Iv-X^I-w-2r-&+Mod 

B 

A+X, 

f v+w+2r+£+X^-Mod, 

(317e) 

0 < M < ININ{X^,XG,N^+NG-W} 

(317f) 

Also, (3 09d) still holds. The constant f is given by (304) 

and the constants B and A are given by Eqs. 29ff of (Silver 

and Ruedenberg, 1968). 
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5. Discussion 

The final asymptotic formula for the integral of (290) 

is given by (292), (310), (314), (283), (316) and (304). 

This formula has several desirable features. First, it con­

tains no rotation representation matrices. Second, it makes 

maximum use of the charge distribution concept, which has 

proved essential for economy of computation time in diatomic 

calculations. Third; only two summations need to be per­

formed in the calculation of for each charge distribution, 

because the constants T can be calculated once for all and 

stored, and the set of constants K can be calculated once for 

each molecule and stored. 

Since (292) is an asymptotic expansion, the series must 

be truncated at values of n^ and n^ less than those for which 

the terms begin to grow larger. 
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VI. APPENDIX A: MATHEMATICAL THEOREMS 

Theorem 1: 

Let be a sequence of functions defined on the infi­

nite interval x > a such that f^(x) k 0 for each x > a 

and each n=l,2,*"" . If, for each b > a, it is known that 

b 

/ 1 ^-t! ..... 
a n=l n=l a 

then we also have that 

/' t <.». « - 1 /\i.i 
a n=l " n=l a 

provided that either side of the last equation is convergent. 

Note. We can omit the hypothesis f^^x) > 0, if, in­

stead, we assume that at least one side of the last equation 

is convergent when f^(x) is replaced by |f^(x)| . 

(Apostol, 1957, p. 451, Theorem 14-31) 

Theorem 2: 

Assume that ^ f^^x) = f(x) (uniformly on a 3 x ^ b), 

where each f is a real-valued function such that f_ is n n 

Riemann-integrable on a < x £ b . Then we have 

(a) f is Riemann-integrable on a ^ x ^ b . 
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.X -SSm .X 

(b) J 2 dt = 2 / f (t) dt (uniformly 
a n=l n=l a 

on a ^ X i b) 

(Apostol, 1957, p. 400, Theorem 13-11) 

Definition: Uniform convergence of an infinite series 

Given a sequence of functions {f^} defined on a set T, 

For each x in T, let 

n 

s^(x) = 2 f^(x) (n = 1,2,'"') 

k=l 

If there exists a function f such that, for every £>0, there 

exists an N (depending only on e) such that n > N implies 

s^(x) - f(x) I < e , for every x in T, 

we say the series I f^^x) converges uniformly on T and we 

write 

2 f (x) = f(x) (uniformly on T) 
n=^l * 

(Apostol, 1957; p. 395, Definition 13-5 and p. 393, 

Definition 13-1) 
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Theorem 3 : Cauchy condition for uniform convergence of series 

The series ^ f^^x) converges uniformly on T if, and 

only if, for every £>0 there is an N such that n > N implies 

n+p 

2 
k=n+l 

< e 

for each p=l,2,-*-, and every x in T. 

(Apostol, 1957, p. 39 6, Theorem 13-6) 

Theorem 4 : Weierstrass' M-test 

Let be a sequence of nonnegative numbers such that 

0 i If^(x) I ^ , 

for n=l,2,"'", and for every x in T. Then J f^^x) converges 

uniformly on T if ^ converges. 

(Apostol, 1957, p. 396, Theorem 13-7) 

Theorem 5 : 
00 

Given a power series % a^Cz-z^)" , let 
n=0 

X = lim sup[(la^|) , r = ̂  

(where r = 0 if X = +<» and r = -H» if A = 0) . Then the 

series converges absolutely if |z-zg| < r and diverges if 
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1Z-Zq1 > r . Furthermore ̂ the series converges uniformly on 

every closed and bounded subset interior to the circle of 

convergence. 

Note. If the limit 

lim 
n-»(o 

n 

n+1 

exists (or if this limit is +oo) , its value is also equal to 

the radius of convergence of the power series. 

(Apostol, 1957; p. 409, Theorem 13-21 and p. 55, 

Theorem 340) 

Theorem 6 : 

If a^ > 0 and b^ > 0 for n=l,2,***, and if there 

exist positive constants c and N such that 

a^ < cb^ for n > N , 

then convergence of ^ b^ implies convergence of % a^ 

(Apostol, 1957, p. 360, Theorem 12-20) 

Theorem 7 : 

Assume that a > 0 and b >0 for n=l,2,***, and 
n n 

suppose that 

lim [a^/b^] = c > 0 . 
n-H» 
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Then J converges if, and only if, ]] converges. 

(Apostol/ 1957, p. 360, Theorem 12-21) 

Theorem 8 : 

The series 

;(s) = / l/n® 
n^ 

converges if s > 1 and diverges if s < 1 

(Apostol, 1957, p. 363, Example 2) 

Theorem 9 ; 

If 

= 1 + A/n + (5(l/n^) 

where A is independent of n, then the series ^ is abso­

lutely convergent if A < -1 . 

(Whittaker and Watson, 1927, p. 24, Corollary to 2.37) 
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VIU APPENDIX B: COMPUTER PROGRAMS 

PROGRAM i: TABGAM 

C TABGAM - CALCULATES TABLE GAKTAB AND STORES IT 
C IN A DIRECT ACCESS DATASET 
C GAMTAB(L,X)=GAMMA(L+1/2)*GAMMASTAR(L+1/2 » X) 
C (SEE NBS APPL.MATH.SERIES 55,SECTION 6.5) 
C ARGUMENTS-LTGAM=MAXIMUM VALUE OF L=LA+LB+LC+LD 
C 

SUBROUTINE TABGAK(LTGAM) 
IMPLICIT REAL*8(A-H,0-Z) 
REAL*4 RSQMAX 
DIMENSION GAMTAB(2272),6XPX(2272),X(2272) 
DEFINE FILE 10(45,1516,U,JDISK) 
IDISK=10 
LREC=758 

C 
C LPMAX=NUMBER OF TERMS TO SE USED FOR 
C INTERPOLATION 
C 

LPMAX=3 
IMIN=LTGAM+LPMAX 
LT0P=IMIN-1 
J2L0=LREC+i 
J2HI=2*LREC 
J3L0=J2HI+i 

C 
C RSQMAX=MAXIMUM VALUE OF ARG. OF GAMMA IN TABLE 
C DRHCSG=INCREMENT IN ARG. OF GAMMA BETWEEN 
C TABLE ENTRIES 
C 

RSQMAX=23.044 
DRHOSQ=1«CD-02 

C 
C THIS SECTION COMPUTES TOP ROW OF TABLE (HIGHEST L VALUE) 
C USING SERIES (NBS APPL.MATH.SERIES 55,ITEM 6.5.29) 
C 

FACT0=I.DO/(LTOP+O.5D0) 
JMAX=INT(RSQMAX/SNGL(ORHOSQ))-32 
DO lie J=1,JMAX 
X(J)=(J+32)*DRH0SQ 
EXPX(J)=DEXP(-X(J)) 
FACT=FACTO 
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SUM=FACT 
DO IOC I=IMIN,150 
FACT=FACT*X(J)/(I+0.5D0) 
SUM=SUM+FACT 
IF((FACT/SUM).LE.l.D-iO) GO TO 110 

100 CONTINUE 
110 GAMTAB(J)=SUM*EXPX(J) 

WRITE(IDISK'3*IMIN-2) {GAMTA8(J),J=1,LREC) 
WRITEdDISK'JDISK) (GAMTAB(J) ,J=J2L0,J2HI ) 
WRITE(IDISK*JDISK) (GAMTAB(J),J=J3L0,2272) 

C 
C THIS SECTION COMPUTES THE REST OF THE TABLE 
C BY DOWNWARD RECURSION 
C (NBS APPL-MATH.SERIES 55,ITEM 6.5.23) 
C 

DO 200 I=1,LT0P 
RALPH=1.000/(DFL0AT{LT0P-I)+0.5D0) 
L=IHIN-I 
DO 15C J=1,JMAX 

150 GAMTAB(J) = (X(J)^-6AMTAB( J)+EXPX( J) )*RALPH 
WRITE(IDISK'3*L-Z) (GAMTAB(J),J=1,LREC) 
WRITEdDISK* JDISK) (GAMTABC J) , J=J2L0, J2HÎ ) 
IF(L.EQ.i) GO TO 160 
WRITE(IDISK'JDISK) (GAKTAB(J),J=J3L0,2272) 
GO TO 200 

160 WRITE(IDISK'JDISK) (GAMTAB{J),J=J3L0,2272),RSQMAX, 
1 LTGAH,DRH0SQ 

200 CONTINUE 
RETURN 
END 

PROGRAM 2: FLNRHO 

C FLNRHO CREATES ARRAY EFFLN(J)=EFFLN(N,L) DEFINED BY 
C EFFLN(0,L)=ZETFAC**(L+l/2)*CAMMA(L+l/2) 
C *GAMMASTAR(L+i/2,RH0SQ) 
C EFFLN(N,L)=ZETFAC**(N+L+l/2)*(N-1)FACTRL*EXR0SQ 
C *LAGUERRE(N-l,L+l/2) 
C J=(N+(L+l)/2)**2+(L+l)/2 = ((NU+l)/2)**2+(L+l)/2 
C IF L=ODD 
C J=(N+L/2)*(N+L/2+l)+L/2+l = (NU/2)*(NU/2+l)+L/2+l 
C IF L=EVEN 
C ARGUMENTS 
C GAMTAB=TABLE OF GAMMA*GAMMASTAR FOR INTERPOLATION 
C (SEE NBS APPL.MATH.SERIES 55,SECTION 6.5) 
C LMAX=HIGHEST VALUE OF L=LA+LB+LC+LD 
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JFMAX=DÏHENSION OF EFFLN=(LMAX/2+l)**2 
IF LMAX IS EVEN 

(LMAX/2+1)*(LMAX/2+2I 
IF LMAX IS ODD 

SUBROUTINE FLNRHO(GAMTAB,LMAX,EFFLN,JFMAXÎ 
IMPLICIT REAL*8 (A-H,0-Z) 
REAL*4 RSQMAX 
C0MMGN/AF/ALPHAR{20),RSQMAX,LTGAM,DRH0SQ,AZ1,AZ2,PXI, 

1 PY1,PZ1,PX2,PY2,PZ2 

ALPHAR(N)=l.000/(N-0.500) 
RSQMAX=HIGHEST VALUE OF RH0S8 FOR WHICH GAMTAB 

IS TO BE USED 
LTGAM=MAXIMUM VALUE OF L=LA+LB+LC+LD 
DRHOSQ=INCREMENT IN ARG OF GAMTAB BETWEEN ENTRIES 

DIMENSION GAMTAB(2272,3) 
DIMENSION EFFLN(JFMAX) 
RHOSQ= (PX1-PX2}**2+(PY1-PY2 Î **2+(PZ1-PZ2)**2 
ZETFAC=1.0DO/(AZ1*AZ1+AZ2*AZ2) 
RHOSQ=RHOSQ*ZETFAC 

RHOSQ=(DISTANCE BETWEEN POINTS PI AND P2)**2 
DIVIDED BY (AZ1**2+AZ2**2) 

TEMPZF=DSQRT<ZETFAC) 
IF(SNGL(RH0SQ).LE.l,E-i5) GO TO 400 
IF(LMAX.EQ.O) GO TO 70 
EXROSQ=DEXP(-RHOSQ) 

CALC GAMMA*GAMMASTAR FOR ALL L BY RECURSION 
(NBS ITEM 6.5.23) 

IF(SNGL(RHOSQ).GT.RSQMAX) GO TO 80 

DOWNWARD RECURSION 

EFFLN(JFMAX)=GAHTOP(LMAX,RHOSQ,EXRGSQ,GAMTAB) 
J=JFMAX 
JDIF=LMAX/2+l 
LMAXI=LMAX+i 
DO 60 LP=1,LMAX 
JNEW=J-JDIF 
L=LMAX1-LP 
EFFLN(JNEW)=ALPHAR(L)*(RHOSQ*EFFLN(J)+EXROSQ) 
J=JNEW 
IF(MOD(L,2).EQ.O) JDIF=JDIF-1 
CONTINUE 
GO TO 100 
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7C IF(SNGL(RHOSQ).GT.RSOMAX) GO TO 76 
ÏF(SNGL(RHOSQ).LE.0.325) EXRO5Q=DEXP(-RHOSQ) 
EFFLNd }=TEMPZF*GAMTOP(0,RH0SQ, EXROSQ,GAMTAB) 
RETURN 

76 IF(SNGL(RH0S0).LE.36.0} EXROSQ=DEXP(-RHOSQ) 
EFFLN(1)=TEMPZF*GAMLGW(RH0SQ,EXROSQ) 
RETURN 

UPWARD RECURSION 

8G EFFLN(1)=GAML0W(RHCSQ,EXROSQ) 
j=1 
JDIF=1 
RECÏP=I.OCO/RHOSQ 
ALPHA=0.5D0 
DO 90 L=1,LMAX 
JNEW=J+JDIF 
EFFLN(JNEW)=RECIP*(ALPHA*EFFLN(J)-EXROSQ) 
ALPHA=ALPHA+1.0D0 
J=JNEW 
IF(M00(L,2).EQ.l) JDIF=JDIF+1 

9G CONTINUE 

CALC EFFLN FOR ALL L, N=0,l,2 

IOC EFFLN(1)=TEKPZF*EFFLN(1) 
TEMPZF=TEMPZF*ZETFAC 
EFFLN(2)=TEMPZF*EFFLN(2) 
IF(LMAX/2-l) 350,110,150 

lie EFFLN(3)=TEMPZF*EXRGSQ 
IF(LMAX.LT.3) GO TO 120 
TEMPZF=TEMPZF*ZETFAC 
EFFLN(4)=TEMPZF*EFFLN(4) 
EFFLN(5)=ZETFAC*EFFLN(3) 
EFFLN(6)=ZETFAC*TEMPZF*EFFLN(6) 
RETURN 

12C EFFLN(4)=ZETFAC*TEMPZF*EFFLN(4) 
RETURN 

15C EFFLN(3)=TEMPZF*EXR0SQ 
TEMPZF=TEMPZF*ZETFAC 
EFFLN(4)=TEMPZF*EFFLN(4) 
SUM0=1.5D0-RH0SQ 
SUM=SUMO 
J=4 
Jl=3 
JDIF=2 
LPMAX=LMAX-3 
LMAX5=LMAX-5 
DO 200 LP=1,LPMAX 
L=LP-1 
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TEMPZF=ZETFAC*TEMPZF 
J=J+JDIF 
EFFLN(J)=TEMPZF*EFFLN(J) 
J1NEW=J-1 
EFFLN(J1NEW)=ZETFAC*EFFLN(J1) 
J1=J1NEW 
IF(MOD(L,2).EQ.O; JDIF=JDÏF+1 
J2=J1+JDIF-1 
EFFLN(J2)=EFFLN(J1)*SUM 
IF(LMAX5-L) 200,190,170 

CALC EFFLN FOR ALL L, N.GE.3 BY RECURSION 
(LAGUERRE POLYNOMIALS) 

170 NUMIN=6+L 
N=i 
J20LD=J2-L-4 
DO 180 NU=NUMIN,LMAX,2 
J2NEW=J2+NU 
EFFLN(J2NEW)=ZETFAC*(((NU-4)+SUM0)*EFFLN(J2)-

1 ZETFAC*N*((N+L)+0.5D0)*EFFLN(J20LD)) 
N=N+i 
J20LD=J2 

180 J2=J2NEW 
190 SUM=SUM+1.GD0 
200 CONTINUE 

J=J+JDIF 
EFFLN(J)=ZETFAC*TEMPZF*EFFLN(J) 
EFFLN(J-1)=ZETFAC*EFFLN(J1) 

35C RETURN 

ENTRY FOR ONE-CENTER CASE 

ENTRY FLNIC(LMAX,EFFLN,JFMAX) 
ZETFAC=i.000/(AZ1*AZ1+AZ2*AZ2) 
TEMPZF=DSQRT(ZETFAC) 

RH0SQ=0.0,S0 ONLY TERMS WITH L=0 APPEAR 
GAMMA(l/2)*GAMMASTAR(l/2,0.0)=2.0 

400 EFFLN(i)=TEHPZF+T£MPZF 
IF(LMAX.EQ.O) RETURN 
00 410 J=2,JFMAX 

410 EFFLN(J)=C.ODO 
IF(LMAX.EO.l) RETURN 
TEMPZF=TEMPZF*ZETFAC 
EFFLN(3)=TEMPZF 
IF(LMAX.LE.3) RETURN 
TEMPZF=TEMPZF*ZETFAC 
EFFLN(7)=TEMPZF*1.5D0 
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IF(LMAX.LE.5) RETURN 
C 
C CALC EFFLN FOR L=0, N.GE.3 BY RECURSION 
C (LAGUERRE POLYNOMIALS) 
C 

J2=7 
N=1 
J20LD=3 
DO 480 NU=6,LMAX,2 
J2NEW=J2+NU 
EFFLN(J2NEW)=ZETFAC*(((NU-4)+1.5D0)*EFFLN(J2) 

1 -ZETFAC*N*(N+C.5DC)*EFFLN(J20LD)) 
n=n+1 
J20LD=J2 

4SC J2=J2NEW 
RETURN 
END 

PROGRAM 3: GAMTOP 

C GAMTOP=GAMMA(LMAX+0.5)*INC.GAMMASTAR(LMAX+0.5,RHOSQ) 
C COMPUTED BY TAYLOR SERIES USING A GRID 
C ASSUMES GAMTAB IS ALREADY IN CORE 
C GAMTAB=TABLE OF GAMKA*GAMMASTAR FOR INTERPOLATION 
C GAMTAB(L,X)=GAKMA(L+1/2)*GAMMASTAR(L+1/2,X) 
C (SEE NBS APPL.MATH.SERIES 55,SECTION 6.5) 
C EXROSQ=OEXP(-RHOSQ) 
C 

FUNCTION GAMTOP(LMAX,RHOSQ,EXROSQ,GAMTAB) 
IMPLICIT REAL*8(A-H,0-Z) 
REAL*4 RSQHAX 
REAL*4 FJ 

C 
C ALPHAR(L)=l»0D0/(L-O.5DC) 
C RSOMAX=HIGHEST VALUE OF RHOSQ FOR WHICH GAMTAB 
C IS TO BE USED 
C LTGAM=MAXIMUM VALUE Or L=LA+LB+LC+LD 
C DRHOSQ=INCREMENT IN ARG OF GAMTAB BETWEEN ENTRI 
C 

COMMCN/AF/ALPHAR(20),RSQMAX,LTGAM,DRHOSQ 
DIMENSION GAMTAB(2272,3) 
IF(SNGL(RH0SQ).L£-0.325) GO TO 350 

C 
C CALC GAMTCP BY TAYLOR SERIES USING GAMTAB 
C 

27 FJ=SNGL(RHOSQ)/SNGL{DRHOSQ) 
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J=FJ 
FLOATJ=J 
J=J-32 
DELTA=RHOSQ-FLOATJ*DRHOSQ 
1F{(FJ-SNGL(FLOATJ)).LE.0.5) GO TO 30 
J=J+1 
DELTA=OELTA-ORHOSQ 

30 CONTINUE 
SUM=GAKTAB(J,1)-DELTA*(GAMTAB(J,2) 

1 -DELTA*0.5D0*GAMTAB(J,3)) 
320 GAKTOP=SUM 

RETURN 
C 
C CALC GAMTOP FOR SMALL RHOSQ BY SERIES(N8S ITEM 6.5.29) 
C 

250 IF(LMAX.LT.5) GO TO 360 
SUM=1.DQ 
GO TO 380 

36C IF(LMAX.LT.2) GO TO 370 
SUM=1.DC+RHOSQ*ALPHAR(LMAX+6} 
GO TO 380 

37C SUM=1.D0+RH0SQ*ALPHAR(LMAX+6)*(1.D0+RH0SQ* 
1 ALPHAR{LMAX+7)) 

380 SUM=ALPHAR(LMAX+1)*(!.D0+RHQS0*ALPHAR(LMAX+2) 
1 *(1.D0+RH0SQ*ALPH6R(LMAX+3)*(1,OO+RHOSQ-ALPHAR{ 
2 LMAX+4)*(1.00+RHOSQ*ALPHAR(LMAX+5)*SUM)))) 
GAMT0P=5XR0SQ*SUM 
RETURN 
END 

PROGRAM 4: GAMLOW 

C GAMLOW=GAM%A(0.5)*INC.GAMMASTAR(0.5,RHOSQ) 
C =SQRT(PI)-ERF(RHO)/RHO 
C (SEE NBS APPL.MATH.SERIES ITEM 6.5,16) 
C RH0=SQRT(RHOSQ) 
C ERF CALCULATED BY ASYMPTOTIC EXPANSION 
C (NBS APPL.MATH.SERIES 7.1.23) 
C VALID FOR 4.8.LE.RH0 (23.04.LE.RHOSQ) 
C EXROSQ=OEXP(-RHOSQ) 
C 

FUNCTION GAMLOWCRHOSQ,EXROSQ) 
IMPLICIT REAL*8(A-H,0-R,T-Z) 
EQUIVALENCE(RH0,TERM1) 
RHO=DSQRT(RHOSQ) 
SNGRHO=SNGL(RHO) 
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TERMl=1.7724538509C55i6/RH0 
IF(SNGRH0.LT.6.Q1 GO TO 20 
GAMLOW=TERMI 
RETURN 

20 SRECIP=1.0/SNGL(RH0S0) 
IF(SNGRH0.LT.5.2) GO TO 50 
IF(SNGRH0«LE.5.5) GO TO 30 
SSUM=1.0 
GO TO 100 

30 SSU%=1.0-0.5*SRECIP 
GO TO 100 

5C SFACTR=0.5*SRECIP 
IF(SNGRH0.LT.5.0) GO TO 60 
$SUM=1.0-SFACTR*{1.0-3. 0*SFACTR) 
GO TO 100 

60 SSUM=1.0-SFACTR*(1.0-3.0*SFACTR*(1.0-5.0*SFACTR)) 
100 GAMLOW=TERM1-SNGL(EXROSQ)*SRECIP*SSUM 

RETURN 
END 
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PROGRAM 5: MUSUM4 

C MUSUM4 - CALCULATES ARRAY SUMM AND PUTS IT IN CORE 
C SUMM DEPENDS ONLY ON THE LOCATION OF THE NUCLEI, 
C NOT ON ORB. EXP«S 
C SUMM(J)=SUMM(M,L,LAMBD2,LAMBD1) 
C CALC INVOLVES SUMS ON MUl AND MU2 IN STEINBORNS 
C FORMULA FOR A SOLID SPHERICAL HARMONIC OF ONE 
C VECTOR IN TERMS OF THOSE FOR THREE VECTORS 
C ARGUMENTS - NCENTR INDICATES WHICH NUCLEI CORRESPOND 
C TO ABCD 
C LMAX = MAX VALUE OF L,LAMBD1,LAMBD2 
C PABfPHIAB REFER TO AB, PCD,PHICD REFER TO CD 
C 

SUBROUTINE MUABCD(SUMM,NCENTR,LMAX,PAB,PHIAB,PCD, 
1 PHICD) 
IMPLICIT REAL*8(A-H,0-Z) 
C0MM0N/NUCLEI/CENTER(3,4>,CHRG(4),LHI(4) 
C0MM0N/YS/RECIP(24),RRT2PI,PMN(45),PHIMN,C0S00(4), 

1 COSO(26),COSM(386),SINM(386) 
DIMENSION PAB(45),PCD{45) 
DIMENSION RMIDPT(3),NCENTR{4),POWER(8) 
DIMENSION SUMM(l) 
DATA TWOPI/6.283185307179586/,RT2PI/2.506628274631001/ 
SUMM(1)=RRT2PI 
IF(LMAX.EQ.O) RETURN 
LMAXi=LMAX+l 

C 
C FIND COORDS OF VECTOR BETWEEN MIDPOINTS OF RAB AND RCD 
C 

RMN=O.ODO 
DO 20 1=1,3 
RMIDPT(I)=0.5DO*(CENTER(I,NCENTR(3)}+ 

1 CENTER(I,NCENTR(4})-CENTER(I,NCENTR(1)) 
2 -CENTER(I,NCENTR(2))) 

20 RMN=RMN+RMIDPT(I)*RMIDPT(I) 
RMN=DSQRT(RMN) 
JP=1 
IF{ABS{SNGL(RMIDPT<3))).NE.SNGL(RHN)) GO TO 200 

C 
C TRIG2 CALCULATES AND STORES SINE AND COSINE OF ANG 
C FOR ALL M,MU1 
C ANG=MU1*PHIAB+(M-MU1)*PHICD FOR CASE MU2=M-MU1, 
C PHIMN UNDEFINED 
C 

CALL TRIG2(LMAX,LMAXD2,PHIAB,PHICD) 
IF(SNGL(RMN).NE.O.O) GO TO 100 
ASSIGN 320 TO KMO 
ASSIGN 395 TO KM 
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GO TO 210 
100 IF(SNGL<RMIDPTÎ3)).LT«0.0) GO TO 105 

ASSIGN 120 TO KZ 
GO TO 110 

105 ASSIGN 115 TO KZ 
C 
C CALCULATE PMN(L,0) FOR CASE CCSTH=1 OR -1 
C 

lie PMN(1)=RRT2PI 
J0LD=1 
DO 130 L=1,LMAX 
J=JCLD+L 
GO TO KZ,(115,120) 

115 PMN(J)=-RECIP(L)*PMN(JOLD) 
GO TO 130 

120 PHN{JJ= RECIP(L)*PMN(JOLD) 
130 JGLD=J 

ASSIGN 345 TO K1 
ASSIGN 405 TO K2 
GO TO 205 

20C ASSIGN 355 TO K1 
ASSIGN 450 TO K2 
PHIKN=DATAN2{RMIDPT(2},RMIDPT(1J) 
C0STH=RMIDPT(3)/RMN 

C 
C PLMBAR CALCULATES PMN(L,M) FOR GENERAL CASE 

CALL PLMBAR(COSTH,LMAX,PMN) 
C 
C TRIG3 CALCULATES AND STORES SINS AND COSINE OF ANG 
C FOR ALL M,MU1,MU2 
C ANG=MUl*PHIAB+MU2*PHICD+(M-MU1-MU2)*PHIMN 
C 

CALL TRI63(LMAX,LMAXD2,PHIAB,PHICD) 
205 ASSIGN 335 TO KPOW 

ASSIGN 330 TO KMC 
ASSIGN 400 TO KM 
P0WER(1I=RMN 

210 ASSIGN 300 TO KLMIN 
JT0=LMAXD2+1 
JADD0=2*JT0 
DO 600 LAMI=1,LMAX1 
LAMBDl=LAMi-l 
JLl=LAMBDi*LAMl/2+l 
RPC=-1,0D0 
LAM2MX=LMAX1-LAMBD1 
DO 595 LAM2=1,LAM2MX 
LAMBD2=LAM2-1 
LAMSUM=LAMBD1+LAMBD2 
RPC=-RPC 

C RPC=(-1)**LAMBD2 
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JL2=LAHBD2*LAM2/2+l 
GO TO KLMIN,(220,300,215) 

C 2ND TIME THRU LOOP ON L, POWER WAS CALCO 1ST TIME, 
C NEXT STMT PREVENTS RECALCULATION 

215 ASSIGN 340 TO KPOW 
ASSIGN 220 TO KLMIN 

C 2ND AND SUBSEQUENT TIMES THRU LOOP ON L -
C CALC SUMM FOR L=LAMSUM. THIS IS SKIPPED FOR LAMSUM 
C BECAUSE THAT CASE, SUMM(l), HAS BEEN DONE 
220 C0NST=DSIGN{RT2PI,RPC) 

JM=JP 
JP=JP+LAMSUM+1 

C 
C M=0 

THO=PAB {JL1 ) =f=PC D ( JL2 ) 
MU1MAX=MIN0(LAMB01,LAMBD2) 
IF(MUIMAX.EQ.O) GO TO 242 
SUMP=O.ODO 
ASSIGN 235 TO KMMOD 
JTRIG=JTO 
DO 240 MU1=1,MU1MAX 
IF(MUl.NE.l) JTRIG=JTRIG+JADD0-MU1 
TERM=PA8(JLl+MUi)*PCD(JL2+MU1)*C0S0(JTRIG) 
GO TO KMMOD,(230,235) 

C 
C MUl IS EVEN 
230 SUMP=SUHP+TERM 

ASSIGN 235 TO KMMOD 
GO TO 240 

C 
C MUl IS ODD 

235 SUMP=SUMP-TERM 
ASSIGN 230 TO KMMOD 

240 CONTINUE 
SUMM(JP)=CONST*(TMO+2.0DO*SUMP) 
GO TO 244 

242 SUMM(JP)=CONST*TMO 
C 
C ALL M NOT 0 
244 SIGNM=1.0D0 

JTM=0 
DO 270 M=l,LAMSUM 
JM=JM+1 
JP=JP+1 
MU1MAX=MIN0( LAMBD1,M+LAMBD2) 
MUlMIN=MAX0(-LAMBDl,H-LAKBD2) 

C SIGNM=(-1)**M 
SIGNM=-SI6NM 
LMAXMM=LMAX-M 
MDIF2=LMAXMM/2 
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LMAXP=LMAX1-M0D(LMAXNK,2) 
JTRIG=JTM+MDIF2*LMAXP-MDIF2*(MDIF2-l)/2+l 
IF(MUIMIN.GT.O) GO TO 250 
JTRIGP=JTRIG+M 
TM0=PAB(JL1)*PCD(JL2+M)*SIGNM 
SUMP=TMO*COSM(JTRIGP) 
SUMN=TMO*SINM(JTRIGP) 
IF(MUIMIN.LT.O) GO TO 260 
IF(MUIMAX.EQ.O) GO TO 259 
MU1MIN=1 
GO TO 251 

250 SUMP=O.ODO 
SUMN=O.ODO 

251 SIGN=SIGNM 
252 DO 258 MU1=MU1MIN,MU1MAX 

MMMU1=M-MU1 
IF(MMMUl.LT.C) SIGN=-SIGN 

C SIGN=EPSIL0N(MU1)*EPSILCN(M-MUl) 
TM0=SIGN*PAB(JL1+MU1)*PCD(JL2+IABS(MMMU1)) 
JTRIGP=JTRIG+MUl*LMAXP-MUl*(MUl-I)/2+MMMUl 
SUMP=SUMP+TMO*COSM(JTRIGP) 

258 SUMN=SUMN+TMO*SINM(JTRIGP) 
259 SUMM(JP)=CONST*SUMP 

SUMM(JM)=CONST*SUMN 
IF(M.NE.LAMSUM) JTM=LMAXP*LMAXP 

1 -((LMAXP+l)*(LMAXP-l)+M*M)/4+JTM 
GO TO 270 

260 MU1MIN=-HU1MIN 
SIGN2=SIGNM 
SI6N=SIGNM 
DO 265 MU1=1,MU1MIN 

C SIGN2=(-1)**(M-MU1) 
SIGN2=-SIGN2 
MPMUl=M+MUi 
MMMU1=M-MU1 
IF(MMMUl.LT.O) SIGN=-SIGN 

C SIGN=EPSILON(MU1)*EPSILON(M-MU1) 
TMO=SIGN*PCD(JL2+IABS(MMMUI)) 
TM1=SIGN2*PCD(JL2+MPMU1) 
JTERM=MUl*LMAXP-MUl*(MUl-l)/2 
JTRIGP=JTRIG+JTE RM+MMMU1 
JTRIGM=JTRIG-JTERM+MPMU1 
J=JL1+HU1 
SUMP=SUMP+PAB(J)*(TM0*C0SM(JTRIGP)+TM1*C0SM(JTRIGM)) 

265 SUMN=SUMN+PAB(J)*(TM0*SINM(JTRIGP)+TM1*SINM(JTRIGM)) 
IF(MUIMIN.EQ.MUIMAX) GO TO 259 
MU1MIN=MU1MIN+1 
GO TO 252 

270 CONTINUE 
GO TO 310 
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C 1ST TIME THRU LOOP ON L 
300 ASSIGN 215 TO KLMIN 
310 IF(LAMSUM.EQ.LMAX) GO TO 600 

C 
C ALL L.GT.LAMSUM 

LMIN=LAMSUM+1 
CONSTA=DSIGN(TWOPI,RPC) 
DO 590 L=LMIN,LMAX 
jm=jp 
JP=JP+L+1 
GO TO KMC,(320,330) 

C RMN=0 
32C SUMM(JP)=O.ODO 

GO TO 390 
C RMN.NE.O 

330 GO TO KPOW,(335,340) 
335 IF(L.NE.l) P0WER(L)=RMN*P0WER(L-1) 
34C LAMBD3=L-LAMSUM 

LML1=L-LAMB01 
JL3=LAMBD3*(LAMBD3+1)/2+1 
CONST=C0NSTA*POWER(LAMB03) 

C M=0 
SUMP=O.GDO 
SIGN=1.0DC 
GO TO Kl,(345,355) 

C CDSTH=1 OR -1 
345 TM0=PAB{JL1)*PCD{JL2) 

MU1MAX=MIN0(LAMBDl,LAMBD2) 
IF(MUIMAX.EQ.O) GO TO 352 
JTRIG=JTO 
DO 350 MU1=1,MU1MAX 

C SIGN=(-1)**MU1 
SIGN=-SIGN 
IF(MUI.NE.l) JTRIG=JTRIG+JADDO-MUl 

350 SUMP=SUMP+SIGN*PAB(JL1+MU1)*PCD(JL2+MU1)*COSO(JTRIG) 
352 SUMM(JP)=CONST*PMN{JL3)*(TM0+2.ODO*SUMP) 

GO TO 390 
C 
C GENERAL VALUE OF COSTH 
355 TM0=PCD(JL2)*PMN(JL3) 

MU1MAX=KIN0{LAMBD1,LML1) 
MU2MAX=MING(LAMBD2,LAMBD3) 
IF(MU2HAX.EQ,0) GO TO 361 
DO 360 MU2=1,MU2MAX 

C SIGN=(-1)**MU2 
SIGN=-SIGN 

360 SUMP=SUMP+SIGN*PCD(JL2+MU2)*PMN(JL3+MU2)*COSOO(MU2) 
361 TMO=PAB(JLl)*(TMC+2.ODO*SUMP) 

SUMP=O.ODO 
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IF(MUIMAX.EQ.O) GO TO 385 
LMAXP=LMAX1-MQD(LMAX,2) 
SIGN=1.CD0 
DO 380 HU1=1,MU1MAX 

C SIGN=(-1)**MU1 
SIGN=-SIGN 
JTRIG=JT0+(MUl-l)*LMAXP-MUl*(MUl+l)/2 
MU2HAX=MIN0( LAMBD2,MUl+LAMBD3i 
MU2MIN=MAX0(-LAHBD2,MU1-LAMBD3) 
IF(MU2MIN.GT.O) GO TO 364 
SUM2=SIGN*PCD(JL2)*PMN(JL3+MU1)*C0S0(JTRIG) 
IF(MU2MIN,LT.O) GO TO 370 
IF(MU2MAX.EQ.Q) GO TO 368 
MU2MIN=1 
GO TO 365 

364 SUM2=O.CDO 
365 SIGN2=SIGN 

00 367 MU2=MU2MIN,MU2MAX 
M1MM2=MU1-MU2 
IFÎM1MH2,LT,0J SIGN2=-SIGM2 

C SIGN2=EPSIL0N(MU1)*EPSIL0N(MU1-MU2) 
367 SUM2=SUM2+SIGN2*PCD(JL2+MU2)*PMN(JL3+IABS(M1HH2)) 

1 *COSO(JTRIG+MU2) 
368 SUMP=SUMP+PA8(JL1+MU1)*SUM2 

GO TO 380 
370 MU2«IN=-MU2MIN 

SIGNi=SIGN 
SIGN2=SIGN 
DO 375 MU2=1,MU2MIN 
M1PM2=MU1+MU2 
MiMM2=MUl-MU2 
SIGN1=-SIGN1 

C SIGN1=(-1)**(MU1+MU2) 
IF(M1MM2.LT.0) SIGN2=-SIGN2 

C SIGN2=EPSIL0N(MU1)»EPSIL0N(MU1-MU2) 
375 SUM2=SUM2+PCD(JL2+MU2)*(SIGN1*PMN(JL3+M1PM2) 

1 =5=C0S0( JTRIG-MU2)+SIGN2*PMN( JL3+IABS(M1MM2) ) 
2 *COSO(JTRIG+MU2)) 
IF(MU2MIN.EQ.MU2MAX) GO TO 368 
MU2MIN=MU2MIN+1 
GO TO 365 

380 CONTINUE 
385 SUMM(JP)=CONST*(TM0+2.0D0*SUMP). 

C 
C ALL M.GT.O 
390 SIGNM=1.0D0 

JTM=0 
DO 580 M=1,L 
jm=jm+1 
JP=JP+1 
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GO TO KM,(395,400) 
C RMN=0 
395 SUHMCJM)=0,000 

SUMM{JP)=O.ODO 
GO TO 580 

C 
C RMN.NE.O 

400 LMAXMM=LMAX-M 
MDIF2=LMAXHM/2 
LMAXP=LHAX1-H0D(LMAXMM,2) 
JTRIG=JTM+MDIF2*LMAXP-MDIF2*(MDIF2-l)/2+l 

C SIGNM=(-I)**M 
SIGNM=-SIGNM 
GO TO K2,(405,450) 

C 
C COSTH= 1 OR -1 
405 MU1MAX=MIN0( LAMBDl,M+LAMBD2) 

HU1MIN=MAX0(-LAMBD1,M-LAMBD2)• 
IF(MUIMIN.LE.MUIMAX) GO TO 410 
SUMM(JP)=0«0D0 
SUMMCJM)=O.QDO 
GO TO 575 

410 IF(MUIMIN.GT.O) GO TO 415 
JTRIGP=JTRI6+H 
TM0=SIGNM*PAB(JL1)*PCD(JL2+M) 
SUMP=TMO*COSM(JTRIGP) 
SUMN=TMO*SINM(JTRÎGP) 
IFCMUIMIN.LT.O) GO TO 435 
IF(MUIMAX.EQ.O) GO TO 432 
MU1MIN=1 
GO TO 420 

415 SUMP=O.ODO 
SUMN=O.ODO 

420 SIGN=SIGNM 
422 DO 430 MU1=MU1MIN,MU1MAX 

MMMUi=M-MUl 
IF(MMMUi.LT.OJ SI6N=-SIGN 

C SIGN=EPSIL0N(MU1)*EPSIL0N(M-MU1) 
424 TM0=SIGN*PAB(JL1+MU1)»PCD(JL2+IABS(MMMU1)) 

JTRIGP=JTRIG+MUl*LMAXP-MUl*(MUl-l)/2+MMMUl 
SUMP=SUMP+THO*COSM(JTRIGP) 

430 SUMN=SUMN+TMO*SINM(JTRIGP) 
432 TM0=C0NST*PMN(JL3) 

SUMM(JP)=TMO*SUMP 
SUMM(JM)=TMO*SUMN 
GO TO 575 

435 MU1MIN=-HU1MIN 
SIGN2=SIGNM 
SIGN=SIGNM 
00 445 MU1=1,MU1MIN 
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C SIGN2=(-1)**(M-MU1) 
SIGN2=-SIGN2 
MPMU1=M+MU1 
MMMU1=M-MU1 
IF(MMMUl.LT.O) SIGN=-SîGN 

C SIGN=EPSIL0N(MU1)*EPSIL0NCH-MU1) 
438 TM0=SIGN*PCD(JL2+IABS(MMMU1)) 

TM1=SIGN2*PCD{JL2+MPMU1J 
JTERM=MU1*LMAXP-MU1*(MUl-1)/2 
JTRÏ GP=JTRIG+JTERM+MMMUl 
JTRIGM=JTRIG-JTERM+MPMU1 
J=JL1+MU1 
SUMP=SUMP+PAB(J)*(TM0*C0SM(JTRIGP)+TM1*C0SM(JTRIGM)> 

445 SUMN=SUMN+PAB(J)*(TM0*SINM(JTRIGP)+TM1*SINM(JTRIGM)) 
IF(MUIMIN.EQ.MUIMAX) GO TO 432 
MU1MIN=MU1MIN+1 
GO TO 422 

C 
C GENERAL VALUE OF COSTH 
450 SIGN1=1.0D0 

MU1MAX=MIN0( LAMBD1,M+LML1) 
MU1MIN=MAX0(-LAM8D1,M-LML1) 
IF(MUIMIN.GT.O) GO TO 468 

C 
C MU1=0 FROM HERE TO STMNT 468 

MUL0W=1 
MU2MIN=MAXO(-LAMBD2,M-LAMBD3) 
MU2MAX=MIN0( LAMBD2,M+LAHBD3) 
ÎF(MU2MIN.GT.0> GO TO 458 
TH0=SIGNM*PCD(JL2)*PMN(JL3+M) 
SUM1=TM0*C0SM(JTRIG) 
SUM2=TM0*SINM(JTRIG) 
IF(MU2MIN.LT.O) GO TO 464 
IF(MU2MAX.EQ.O) GO TO 463 
MU2MIN=1 
GO TO 459 
SUM1=0.0D0 
SUM2=0,0D0 
SIGN=SIGNM 
DO 462 MU2=MU2MIN,MU2MAX 
MMMU2=M-MU2 

C SIGN=EPSIL0N(MU2)*EPSIL0N(M-MU2) 
IF(MMMU2.LT.O) SÏGN=-SIGN 

461 TMO=SIGN*PCO(JL2+MU2)*PMN(JL3+IABS(MMMU2)) 
JTRIGP=JTRIG+MU2 
SUM1=SUM1+TMO*COSM(JTRIGP) 

462 SUM2=SUM2+TM0*SINM(JTRIGP) 
463 SUMP=PAB(JL1)*SUM1 

SUMN=PAB(JLl)*SUM2 
IF(MUIMIN.LT.O) GO TO 560 

456 

458 

459 
46 C 
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IF(HUIMAX.EQ.O) GO TO 570 
GO TO 469 

464 MU2MIN=-MU2MIN 
SIGN2=SIGNM 
SIGN=SIGNM 
DO 467 MU2=1,MU2MIN 

C $IGN2=(-1)**(M-MU2) 
SIGN2=-SIGN2 
MPMU2=M+MU2 
mmmu2=m-mu2 

C SIGN=EPSILON(MU2)*EPSILON(M-MU2) 
IF(MMMU2.LT.O) SIGN=-SîGN 
TM0=SIGN2»PMN(JL3+MPMU2) 
TM1=SIGN*PMN{JL3+IABS{HHMU2)) 
J=JL2+MU2 
JTRIGP=JTRIG+MU2 
JTRIGM=JTRIG-MU2 
SUM1=SUM1+PCD(J)*(TM0*C0SM(JTRIGM)+TM1*C0SM(JTRIGP)) 
SUM2=SUM2+PCD(J)*(TM0*SINM(JTRIGM)+TM1*SINM(JTRIGP)) 
IF(MU2MIN.EQ.MU2MAX) GO TO 463 
MU2MIN=MU2MIN+1 
GO TO 460 

SUMP=O.ODO 
SUMN=O.ODO 
SIGNM1=SIGNM 
MUL0W=MU1MIN 
MUHI =MU1MAX 
IND=1 
00 550 MU1=MUL0W,HUHI 
JTERM=MUl*LMAXP-MUi*(HUl-l)/2 
SIGN1=-SIGN1 

C SIGN1=(-1)**MU1 
C 
C SUMS OVER MU2 FOR +MU1 

JTERM3=JTRIG+JTERM 
MMHUi=M-MUl 
MU2MAX=MIN0( LAMBD2»MHMU1+LAMBD3) 
MU2MIN=MAX0(-LAMBD2,MMMU1-LAMBD3) 
IF(MHMUl) 483,470,472 

470 TM0=SIGNM*PCD(JL2)*PMN(JL3) 
SUM1=TMO*COSM(JTERM3) 
SUM2=TM0*SINM(JTERM3) 
IF(MU2MAX.EQ.O) GO TO 495 
SIGN=SIGNM 
DO 471 MU2=1,MU2MAX 

C SIGN=(-1)»*(M-MU2) 
SIGN=-SIGN 
TMO=SIGN*PCD(JL2+HU2)*PMN(JL3+MU2) 
JTRIGP=JTERH3+MU2 

467 

C 
468 

469 

465 
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JTRIGH=JTERM3-MU2 
SUM1=SUM1+TM0*(C0SM(JTRIGP )+COSM(JTRIGM)) 
SUM2=SUM2+TM0*ISINM(JTRIGP )+SINM(JTRIGM)) 
GO TO 495 
IF(MU2MIN.GT.O) GO TO 474 
TM0=SIGNM*PCD(JL2)*PMN(JL3+MMMU1) 
SUM1=TM0$C0SM(JTERM3) 
SUM2=TM0*SINM(JTERM3) 
IF(MU2MIN.LT.0> GO TO 479 
IF(MU2MAX.EQ.O) GO TO 495 
MU2MIN=1 
GO TO 475 
SUM1=O.ODO 
SUM2=0.0D0 
SIGN=SIGNM 
DO 478 MU2=MU2MIN,MU2MAX 
MMM12=MMMU1-MU2 
IF(MMM12.LT.O) SIGN=-SIGN 

C SIGN=EPSIL0N(MU1)*EPSIL0N(MU2)*EP$IL0N(M-MU1-MU2) 
JTRIGP=JTERM3+HU2 
THO=SIGN*PCD(JL2+MU2)*PMN(JL3+IABS(MMM12)) 
SUM1=SUM1+TM0*C0SM(JTRIGP) 

478 SUM2=SUM2+TM0*SINM(JTRIGP) 
GO TO 495 

479 MU2MIN=-MU2MIN 
SIGN =SIGNM 
SIGN2=SIGNM 
DO 482 MU2=i,MU2MIN 
MM1P2=MMMU1+MU2 
MMM12=MMMU1-MU2 
IF(MMH12.LT.O} SIGN=-SIGN 

C SIGN=EPSIL0N(MU1)*EPSIL0N(MU2)*EPSIL0N(M-MU1-MU2) 
C SIGN2=(-1)**(M-MU2) 

SIGN2=-SIGN2 
JTRIGP=JTERM3+MU2 
JTRIGM=JTERM3-MU2 
TM0=SIGN2*PMN(JL3+HM1P2) 
TM1=SIGN*PMN(JL3+IABS(MMM12)) 
J=JL2+MU2 
SUM1=SUM1+PCD(J)*{T%0*COSM(JTRIGM)+TM1*COSM(JTRIGP)) 

482 SUM2=SUM2+PCD(J)*(TM0*SINM(JTRIGM)+TM1*SINM(JTRIGP)) 
IF(MU2MIN.EQ.MU2MAX) GO TO 495 
MU2MIN=MU2MIN+1 
GO TO 476 

483 MU2MIN=-MU2MIN 
SIGN=SIGN1 
IF(MU2MAX.LT.O) GO TO 485 
TM0=SIGN1*PCD(JL2)*PMN(JL3-NMMU1) 
SUM1=TM0*C0SM(JTERM3) 
SUM2=TM0*SINM(JTERM3) 

471 

472 

474 

475 
476 
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IF(MU2MAX.GT.O) GO TO 488 
IF{MU2MIN.EQ.0Î GO TO 495 
MU2MAX=1 
GO TO 486 

485 SUM1=0.0D0 
SUM2=0.0D0 
MU2MAX=-MU2MAX 

486 DO 487 MU2=KU2MAX,MU2MIN 
MM1P2=MMMU1+MU2 
JTRIGM=JTERH3-MU2 

C SIGN=EPSILON( MUi)*EPSILON(«-HU1-HU2) 
IF{MM1P2.GT.Q) SIGN=-SIGN 
TMO=PCD(JL2+MU2)*PMN(JL3+ÎABS(MM1P2))*SIGN 
SUM1=SUM1+TM0-C0SM(JTRIG«) 

487 SUM2=SUM2+TM0*SINM(JTRIGM) 
GO TO 495 

488 SIGN2=SIGN1 
DO 489 MU2=1,MU2MAX 
MH1P2=MMMU1+HU2 
HMM12=MMMU1-MU2 
JTRIGP=JTERH3+MU2 
JTRIGM=JTERM3-MU2 

C SIGN2=(-1)**( MU1+MU2) 
SIGN2=-SIGN2 

C SIGN=EPSILON( MU1)*EPSIL0N(M-MU1-MU2) 
IF(HM1P2.GT.0) SÏGN=-SIGN 
TMO=SÏGN*PMN{JL3+IABS(MM1P2)) 
TM1=SIGN2*PMN(JL3-MMM22) 
J=JL2+MU2 
SUM1=SUM1+PCD(J)*(TMC*C0SM(JTRIGM)+TM1*C0SM(JTRIGP)) 

489 SUM2=SUM2+PCD(J)*{TM0*SINM(JTRIGM)+TM1*SINM(JTRIGP)) 
IF{MU2MIN.EQ.MU2MAX) GO TO 495 
MU2MAX=MU2MAX+1 
GO TO 486 

495 IFCIND.GT.O) GO TO 520 
C SUMS OVER MU2 FOR -.MUi 

MPMU1=M+MU1 
JTERM3=JTRIG-JTERM 
MU2MAX=MIN0( LAHBD2,MPHUi+LAMBD3) • 
MU2MIN=MAX0(-LAMBD2,MPMU1-LAMBD3)' 

C SIGNM1=(-1)*(M-MU1) 
SIGNM1=-SIGNM1 
IF (MU2MIN.GT.0) GO TO 500 
TM0=SIGNM1*PCD(JL2)*PMN(JL3+MPMU1) 
SUM1=TM0*C0SM(JTERM3)+SUM1 
SUM2=TM0*SINM(JTERM3)+SUM2 
IF (MU2MIN.LT.0) GO TO 510 
IF(MU2MAX.EQ.O) GO TO 520 
MU2MIN=1 

500 SIGN=SIGNM1 
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503 DO 505 MU2=MU2MIN,MU2MAX 
MP1M2=MPMU1-MU2 
IF(MP1M2.LT.0) SIGN=-SIGN 

C SIGN=EPSIL0N{MU2 )*EPSIL0N(M-MU1-MU2) 
JTRIGP=JTERM3+MU2 
TM0=SI6N*PCD(JL2+MU2)-PMN(JL2+IABS(MP1M2)) 
SUM1=SUH1+TM0*C0SM(JTRIGP) 

505 SUM2=SUM2+TM0*SINM{JTRIGP) 
GO TO 520 

510 MU2«IN=-HU2MIN 
SIGN =SIGNM1 
SIGN2=SIGNM1 
DO 515 MU2=1,MU2MIN 
MP1M2=MPMU1-MU2 
HPM12=MPMU1+MU2 

C SIGN=EPSIL0N{MU2 )*EPSIL0N(M-MU1-MU2) 
IF(MP1M2.LT.0) SIGN=-SIGN 

C SIGN2=(-1)**(M-MU1-MU2) 
SIGN2=-SIGN2 
JTRIGP=JTERM3+MU2 
JTRTGM=JTERM3-MU2 
TM0=SIGN2*PMN(JL3+MPM12) 
T«1=SIGN*PMN{JL3+IABS(MP1M2)) 
J=JL2+MU2 
SUM1=SUM1+PCD(J)*(TM0*C0SM(JTRIGM)+TM1*C0SM(JTRIGP)) 

515 SUM2=SUM2+PCD(J)*(TM0*SINM(JTRIGM)+TM1*SINM(JTRIGP)) 
IF(MU2MIN.EQ.MU2MAX) GO TO 520 
MU2MIN=MU2MIN+1 
GO TO 503 

520 J=JL1+MU1 
SUHP=SUMP+PAB(J)*SUM1 

550 SUMN=SUMN+PAB(J)*SUM2 
IF(MUHI.EQ.MUIMAX) GO TO 570 

C IF IND.GT.O, MUHI=MU1MAX ALWAYS 
C 
C NOW LOOP THRU MUl FOR VALUES OF IABS(MUl) WHICH APPEAR 
C ONLY AS +MU1 

IND=1 
MUL0W=HUHI+1 
GO TO 469 

560 IND=-I 
MUHI=-MU1MIN 
SIGNM1=SIGNM 
GO TO 465 

570 SUMM(JP)=CONST*SUMP 
SUMM(JM)=CONST*SUMN 

575 IF(M.NE.L) JTM=LMAXP*LMAXP 
1 -((LMAXP+1)*(LMAXP-1)+M*M)/4+JTM 

580 CONTINUE 
590 CONTINUE 
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595 CONTINUE 
600 CONTINUE 

RETURN 
END 

PROGRAM 6: MUSUM3 

C MUSUM3 - FOR 3-CENTER INTEGRALS (AA|CD) AND (ABlAO) 
C 
C ENTRY FOR (AAlCD) 
C PCD,PHICD REFER TO CD 
C PMN,PHIMN REFER TO AN 
C 

SUBROUTINE MUAACD(SUMM,NCENTR,LMAX,PCD,PMN,PHICD, 
1 PHIMN) 
IMPLICIT REAL*8(A-H,0-Z) 
COHMON/NUCLEI/CENTER(3,4),CHRG(4),LHI(4) 
COMMON/SETUP/DUM(I5),RECIP(16),RRT2PI,DUMM(138), 

1 COSOO(4),COSM(8),SINH(8),COSMMU(9,8),SINMMU(9,8) 
DIMENSION RMIDPT(3 >,NCENTR(4),POWER(8),PCD(45),PMN(45) 
DIMENSION SUMM(l) 
DATA RT2PI/2.506628274631001/ 
SUNM(1)=RRT2PI 
IF(LMAX.EQ.O) RETURN 

C 
C FIND COORDS OF VECTOR BETWEEN POINT A AND MIDPOINT OF RCD 
C 

RMN=O.ODO 
DO 1020 1=1,3 
RMIDPT(I)=0.5D0*(CENTER(I,NCENTR(3)) 

1 +CENTER(Ï,NCENTR(4)) ) - CENTERd ,NCENTR(1 Ï ) 
1020 RHN=RMN+RMIDPT(I)*RMIDPT(I} 

RMN=DSQRT(RMN) 
ASSIGN 1316 TO KTYPEl 
ASSIGN 1342 TO KTYPE2 
JP=1 
IF{ABS(SNGL(RHIDPT(3))).NE.SNGL(RMN)) GO TO 1200 
CALL TRIGKLMAX.PHICD) 

C 
C TRIGI CALCULATES AND STORES SINE AND COSINE OF ANG 
C FOR ALL M 
C ANG= M*PHICD FOR CASE MU1=0,MU2=M, PHIMN,PHIAB 
C UNDEFINED 
C 

IF(SNGL(RMN).NE,0.0) GO TO 1100 
ASSIGN 1320 TO KMO 
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ASSIGN 1395 TO KM 
GO TO 1210 

1100 IF(SNGL(RMIDPT{3)J.LT.O.O) GO TO 1105 
ASSIGN 1120 TO KZ 
GO TO 1110 

1105 ASSIGN 1115 TO KZ 
C 
C CALCULATE PMN(L,0) FOR CASE C0STH=1 OR -1 
C 
lllC PMN(1)=RRT2PI 

J0LD=1 
DO 1130 L=1,LMAX 
J=JOLD+L 
GO TO KZ,(1115,1120) 

1115 PMN(J)=-RECIP(L)*PMN(JOLD) 
GO TO 1130 

1120 PMN(J)= RECIP(L)*PMN(JOLD) 
1130 JOLD=J 

ASSIGN 1345 TO K1 
ASSIGN 1405 TO K2 
GO TO 1205 

1200 ASSIGN 1355 TO K1 
ASSIGN 1450 TO K2 
PHIMN=DATAN2{RMIDPT(2),RMIDPT{1) } 
C0STH=RHIDPT(3)/RMN 

C 
C PLMBAR CALCULATES PMN(L,M) FOR GENERAL CASE 
C 

CALL PLMBAR{COSTH,LMAX,PMN) 
C 
C TRIG2A CALCULATES AND STORES SINE AND COSINE OF ANG 
C FOR ALL M,MU2 
C ANG=MU2*PHICD+(M-MU2)*PHIMN FOR CASE MU1=C,PHIAB 
C UNDEFINED 
C 

CALL TRIG2A(LMAX,PHICD,PHIMN) 
1205 ASSIGN 1335 TO KPCW 

P0WER(1)=RMN 
1207 ASSIGN 1330 TO KMO 

ASSIGN 1400 TO KM 
1210 ASSIGN 1300 TO KLMIN 

RPC=-1.0D0 
LMAX1=LMAX+1 
DO 1595 LAM2=i,LMAXl 
LAMBD2=LAH2-1 
RPC=-RPC 

C RPC=(-1)**LAMBD2 
JL2=LAMBD2*LAM2/2+l 
GO TO KLMIN,(1220,1300,1215) 

C 
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C 2ND TIME THRU LOOP ON L. POWER WAS CALCD 1ST TIME, 
C NEXT STMT PREVENTS RECALCULATION 
1215 ASSIGN 1340 TO KPOW 

ASSIGN 1220 TO KLMIN 
C 
C 2ND AND SUBSEQUENT TIMES THRU LOOP ON L -
C CALC SUMM FOR L=LAMB02. THIS IS SKIPPED FOR 
C LAMBD2=0 BECAUSE THAT CASE, SUMM(l), HAS BEEN DONE 
1220 JM=JP 

JP=JP+LAM2 
C 
C M=0 

SUMM(JP)=RPC*PCD(JL2) 
C 
C ALL M NOT 0 

SIGN=RPC 
DO 1270 M=1,LAMBD2 
JM=JM+1 
JP=JP+1 

C SIGN=(-I)**(M+LAMBD2) 
SIGN=-SIGN 
TM0=SIGN-PCD(JL2+M) 
SUMM(JP)=TMO*COSM(M) 
SUMM(JM)=TMO*SINM(M) 

1270 CONTINUE 
GO TO 1310 

C 
C 1ST TIME THRU LOOP ON L 
1300 ASSIGN 1215 TO KLMIN 
1310 IF(LAMBD2.EQ.LMAX) RETURN 

C ALL L.GT.LAMBD2 
LHIN=LAMBD2+i 
CONSTA=DSIGN{RT2PI,RPC) 
GO TO KTYPEl,(1314,1316) 

1314 CONST=CONSTA 
1316 DO 1590 L=LMIN,LMAX 

JM=JP 
JP=JP+L+1 
GO TO KMC,(1320,1330) 

C RMN=0 
1320 SUMM(JP)=0,ODO 

GO TO 1390 
C RMN.NE.O 
1330 GO TO KPOW,(1335,1340) 
1335 IF(L.NE.l) POWER(L)=RMN*P0WER(L-1) 
1340 LAMBD3=L-LAMBD2 

JL3=LAMBD3*(LAMBD3+l)/2+l 
GO TO KTYPE2,(1342,1355) 

1342 CONST=CONSTA*POWER(LAMBD3) 
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C M=0 
GO TO Kl,(1345,1355) 

C 
C C0STH=1 OR -1 
1345 SUMM{JP)=CONST*PCD(JL2)*PMN(J L3) 

GO TO 1390 
C 
C GENERAL VALUE OF COSTH 
1355 TM0=PCD(JL2)*PMN(JL3) 

SUMP=O.ODO 
MU2MAX=MIN0{LAMB02,LAHBD3) 
IF{MU2MAX.EQ.O} GO TO 1361 
SIGN=1.0DO 
DO 1360 MU2=1,MU2MAX 

C SIGN=(-i)**MU2 
SIGN=-SIGN 

1360 SUMP=SUMP+SIGN*PCD(JL2+MU2)»PMN(JL3+MU2)*COSOO(MU2) 
1361 SUMM(JP)=C0NST*(TM0+2.0D0*SUMP) 

C 
C ALL M.GT.O 
1390 SIGNM=1.0D0 

DO 1580 M=1,L 
JM=JM+1 
JP=JP+1 
GO TO KM,{1395,1400) 

C RMN=0 
1395 SUMM(JM)=0.0D0 

SUMM(JP)=0.0D0 
GO TO 1580 

C RMN.NE.O 
C SIGNM=(-1)**M 
1400 SIGNM=-SIGNM 

GO TO K2,(1405,1450) 
C C0STH=1 OR -1 
1405 IF(M,LE.LAMBD2) GO TO 1410 

SUMM(JPÎ=0.0D0 
SUMMCJM)=0.0D0 
GO TO 1580 

1410 TM0=C0NST*SIGNM*PCD(JL2+M)*PMN(JL3) 
SUMM(JP)=TMO*COSM(M) 
SUMM(JM)=TMO*SINM(M) 
GO TO 1580 

C 
C GENERAL VALUE OF COSTH 
1450 MU2MIN=MAX0(-LAMBD2,M-LAH8D3) 

MU2HAX=MIN0( LAMBD2,M+LAHB03) 
MULOW = (LMAX-M)/2+l 
IF(MU2MIN.GT.O) GO TO 1458 
TMO=SIGNM*PCD(JL2)*PMN(JL3+M) 
SUMP=TMO*COSMMU(MULOW,M) 
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SUMN=TMO*SINMMU(MULOW,M) 
IF(MU2MIN.LT.O; GO TO 1464 
IF(MU2MAX.EQ.O) GO TO 1570 
MU2MIN=1 
GO TO 1459 

1458 SUMP=O.ODO 
SUMN=O.ODO 

1459 SIGN=SIGNM 
1460 DO 1462 MU2=MU2MIN,MU2HAX 

MMMU2=M-MU2 
C SIGN=EPSIL0N(HU2)-EPSIL0N(M-MU2) 

IF(MMMU2.LT.O) SIGN=-SIGN 
1461 TM0=SIGN*PCD(JL2+MU2)*PMN(JL3+IABS(MMMU2)) 

JTRIGP=MUL0W+MU2 
SUMP=SUMP+TMO»COSMMU(JTRIGP,M) 

1462 SUMN=SUMN+TMO*SINMMU(JTRIGP,M) 
GO TO 1570 

1464 MU2MIN=-MU2MIN 
SIGN2=SIGNM 
SIGN=SIGNM 
DO 1467 MU2=1,MU2MIN 

C SIGN2=(-1)**(M-MU2) 
SIGN2=-SIGN2 
MPMU2=M+MU2 
MMMU2=M-MU2 

C SIGN=EPSÎL0N(MU2>*EPSÎL0N(M-MU2) 
IF(MMMU2.LT,0) SI6N=-SIGN 
TM0=SIGN2*PMN(JL3+MPMU2) 
TM1=SIGN*PMN(JL3+IABS(MMMU2)) 
J=JL2+HU2 
JTRIGP=MUL0W+MU2 
JTRIGM=MUL0W-MU2 
SUMP=SUMP+PCD(J)*(TMOaCOSHMU(JTRIGM,M) 

1 +TM1*C0SMMU(JTRIGP,M)) 
1467 SUMN=SUMN+PCD(J)*(TMO*SINMMU(JTRIGM,M) 

1 +TM1*SINMMU(JTRIGP,M)) 
IFIMU2MIN.EQ.HU2MAX) GO TO 1570 
MU2MIN=MU2MIN+1 
GO TO 1460 

1570 SUMM(JP)=CONST*SUMP 
SUMM(JM)=CONST*SUMN 

1580 CONTINUE 
1590 CONTINUE 
1595 CONTINUE 

RETURN 
C 
C ENTRY FOR (ABlAD) 
C PCD,PHICD REFER TO AB 
C PMN,PHIMN REFER TO AD 
C 
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ENTRY MUABAD(SUMM, LMAX,PCD,PMN,PHICD,PHIMN) 
SUMM(1)=RRT2PI 
IF(LMAX.EQ.O) RETURN 
ASSIGN 1314 TO KTYPEl 
ASSIGN 1355 TO KTYPE2 
ASSIGN 1340 TO KPOW 
ASSIGN 1450 TO K2 
JP=1 
CALL TRI62A(LMAX,PHICD,PHIMN) 
GO TO 1207 
END 

PROGRAM 7: MUSUM2 

C MUSUM2 -
C FOR 2-CENTER INTEGRALS (AA|CC),(ABlAB), AND (AA|AD) 
C 
C ENTRY FOR (AAI CO-COULOMB 
C 

SUBROUTINE MUCOUL(SUMM,NCENTR, LMAX,PLH,PHI) 
IMPLICIT REAL*8(A-H,0-Z) 
C0MM0N/NUCLEI/CENTER(3,4),CHRG(4),LHI(4I 
C0«M0N/SETUP/DUM{15),RECIP(16),RRT2PI,DUMM{138), 

1 C0S00C4),C0SM(8),SINM(8),C0SMMU(9,B),SINMMU(9,8) 
DIMENSION RMIDPT(3),NCENTR{4),PLM(45} 
DIMENSION SUMM(l) 
SUMH(l)=RRT2PI 
IF(LMAX.EQ.O) RETURN 
ASSIGN 335 TO KPOW 

C 
C FIND COORDS OF VECTOR BETWEEN POINTS A AND C 
C 

RMN=O.ODO 
DO 20 1=1,3 
RMIDPT(I)=CENTER(I,NCENTR(3))-CENTER(I,NCENTR<1}) 

20 RMN=RMN+RMIDPT(I)*RMIDPT(I) 
RMN=DSQRT(RMN) 
IF(A8S(SNGL{RHIDPT(3))),NE.SNGL(RMN)) GO TO 200 
IF(SNGL(RMN).EQ.O-Q) RETURN 
ASSIGN 350 TO K 

C 
C CALCULATE PMN(L,0) FOR CASE C0STH=1 OR -1 
C 

IF(SNGL(RMIDPT(3)).LT.0.0) GO TO 105 
ASSIGN 120 TO KZ 
GO TO 110 
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105 ASSIGN 115 TO KZ 
110 PLM(1)=RRT2PI 

J0LD=1 
DO 130 L=1,LMAX 
J=JOLD+L 
GO TO KZ,(115,120) 

115 PLM(J)=-RECIP(L)*PLM(JOLD) 
GO TO 130 

120 PLM(J)= RECIP(L)*PLM(JOLD) 
130 JOLD=J 

GO TO 300 
200 ASSIGN 380 TO K 

PHI=DATAN2(RMIDPT(2),RMIDPT(1)) 
C0STH=RMIDPT(3)/RMN 

C 
C PLMBAR CALCULATES PMN(L,M) FOR GENERAL CASE 
C 

CALL PLMBAR{COSTH,LMAX,PLM) 
CALL TRIG1(LMAX,PHI) 
GO TO 300 

C 
C ENTRY FOR (ABIAB)-EXCHAN6E AND (AAlAB)-HYBRID 
C 
C PLM,PHI REFER TO AB 
C 

ENTRY MUEXHY(SUMM,LMAX,PLM,PHI) 
SUMM(1)=RRT2PI 
IF(LMAX.EQ.C) RETURN 
ASSIGN 340 TO KPOW 
ASSIGN 380 TO K 
CALL TRIG1{LMAX,PHI) 

300 JP=1 
P0HER=1.0D0 
DO 500 L=1,LMAX 
JL=L*(L+l)/2+l 
GO TO KPOW, (335,340) 

335 POWER=POWER*RMN 
C 
C M=0 

340 JM=JP 
JP=JP+L+1 
SUMM(JP)=PLM(JL)*POWER 

C 
C ALL M.GT.O 

SIGNM=1.0DO 
DO 450 M=1,L 
jm=jm+1 
JP=JP+1 
GO TO K, (350,380) 

350 SUMM(JP)=0.0D0 
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SUMM(JM)=0.000 
GO TO 450 

380 SIGNM=-SI6NH 
TMO=SIGNM*POWER*PLM(JL+M) 
SUMM(JP}=TM0*C0SM(M) 
SUMM(JM)=THO*SINM(M) 

450 CONTINUE 
500 CONTINUE 

RETURN 
END 

PROGRAM 8: TRIG3 

C TRIG 
C COMPUTES SINES AND COSINES NEEDED BY MUSUMS 
C 

SUBROUTINE TRIGS(MMAX,MU1MAX,PHIAB,PHICD) 
IMPLICIT REAL*8(A-H,0-Z) 
C0MM0N/YS/R2CIP(24),RRT2PI,PMN(45),PHIMN,C0S00(4), 

1 C0S0(26),C0SM(386),SINM(386) 
IF(MMAX.EG.O) RETURN 
ANGLE1=PHIAB-PHIMN 
ANGLE2=PHICD-PHIMN 
IF(MMAX.EQ.l) GO TO 120 
MUlMAX=MMAX/2 
J=0 
DO 100 MU1=1,MU1MAX 
M2L0W=MUI-MUlMAX+8 
M2MAX=HUlMAX+8 
ANGLEA=MU1*ANGLE1 
COSOO(MUl)=DCOS(MU1*ANGLE2) 
DO 100 M2=M2LOW,M2MAX 
MU2=M2-8 
J=J+1 

100 COSO(J)=DC0S(ANGLEA-MU2*ANGLE2) 
120 J=0 

DO 200 M=1,MMAX 
ANGLEA=M*PHIMN 
MlL0W=(H-MHAX)/2+8 
MlMAX=(M+MMAX)/2+8 
DO 200 M1=M1LCW,M1MAX 
MUl=Ml-8 
ANGLEB=MU1*ANGLE1+ANGLEA 
IF(MUl.LT.O) GO TO 150 
M2L0W=M1L0W 
M2MAX=M1MAX-HU1 
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GO TO 160 
150 M2L0W=M1L0W-MU1 

M2MAX=M1MAX 
160 DO 200 M2=M2L0W,M2MAX 

J=J+1 
MU2=M2-8 
ANGLE=MU2*ANGLE2+ANGLEB 
COSH(JI=DCOS(ANGLE) 

20C SINM(J)=DSIN(ANGLEI 
RETURN 

ENTRY TRIG2(MMAX,MU1MAX,PHIAB,PHICD) 
IF(MMAX.EQ.O) RETURN 
ANGLEA=PHIAB-PHICD 
IF(MMAX.EQ.l) GO TO 320 
MUlMAX=MMAX/2 
J=MU1MAX+1 
DO 300 MU1=1,MU1MAX 
COSO(J)=DCOS(MU1*ANGLEA) 

300 J=J+2*MU1MAX+1-MU1 
320 J=(l+MMAX)/2+l 

DO 4nn M=1,MMA* 
anglfb^ntphiud 
M1LGm= 1M—rtrtAX) /'2+8 
mpmkax=m+mmax 
MlMAX=MPMMAX/2+8 
J0IF=HMAX-M0D(MP«MAX,2> 
DO 350 H1=M1L0W,M1MAX 
MUl=Ml-8 
ANGLE=MU1*ANGLEA+ANGLEB 
COSMiJ)=DCOS(ANGLE) 
SINM(J)=DSIN(ANGLE) 
IF(MI.EQ.MIMAX) GG TO 350 
IF(MUl.LT-O) GO TO 340 
J=J+JDIF-MU1 
GG TO 350 

340 -J=J+JDIF+MUi+l 
350 CONTINUE 
400 J=J+MMAX+1 

RETURN 
END 
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PROGRAM 9: TRIG2A 

C TRIG2A 
C 

SUBROUTINE TRIG2A(MMAX,PHI1,PHI2) 
IMPLICIT REAL»8(A-H,0-Z) 
COMMON/SETUP/DUM(i5),RECIP(16),RRT2PI,DUMM(138), 
1 COSOO(4},COSM(8),SINM(8),C0SMMU(9,8),SINMHU(9,8) 
IF(KMAX.EQ.O) RETURN 
CALL TRIGKMMAX,PHIl} 
ANGL£A=PHïl-PHI2 
IF(MMAX.EQ.l) GO TO 50 
MUMAX=MMAX/2 
DO 30 MU=1,MUMAX 

30 COSOO(MU)=DCOS(MU*ANGLEA} 
50 MMAX1=MMAX+1 

DO 100 M=1,MMAX 
ANGLÊB=H*PHI2 
MMAXM=MMAX-M 
MUAMAX=MMAX1-M0D(MMAXM,2) 
MUL0W=MMAXM/2+i 
DO 100 MUA=1,MÙAMAX 
MU=MUA-MULOW 
ANGLE=MU*ANGLEA+ANGLE8 
COSMMU(MUA,M)=OCCS(ANGLE) 

100 SINMMU{MUA,M)=DSIN(ANGLE) 
RETURN 
END 

PROGRAM 10; TRIG! 

C TRIGl 
C 

SUBROUTINE TRIGl(MMAX,PHI) 
IMPLICIT REAL*8(A-H,0-Z) 
COMMON/SETUP/DUM(15),RECIP(16),RRT2PI»DUMM(138), 

1 COSOO(4),COSM(8),SINM(8),C0SMMU(9,8),SINMMU(9,8) 
1 SINM(8),C0SMMU(9,8),SINMMU(9,8) 
IFCMMAX.EQ.O) RETURN 
DO 100 M=1,MMAX 
ANGLE=M*PHI 
CCSM(M)=DCOS(ANGLE) 

100 SINM(M)=DSIN(ANGLE) 
RETURN 
END 
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PROGRAM 11: PLMBAR 

C PLMBAR 
C PLM(J)=ASSOC.LEGENDRE FCN/SQRTt2*PI)*(L+M)FACTORIAL 
C J(L,M)=L*(L+l)/2+M+l 
C 

SUBROUTINE PLMBAR(X,LMAX,PLM) 
IMPLICIT REAL*8(A-H,0-Z) 
C0MM0N/YS/RECIP(24),RRT2PI 
DIMENSION PLM(l) 

C 
C RRT2PI=1.0/SQRT(2*PI) 
C 

PLM(1)=RRT2PI 
IF(LMAX.EQ.O) RETURN 
SINE=DSQRT<1.0D0-X-X) 
J0LD=1 
DO 10 L=1,LMAX 
JNEW=J0LD+L+1 
PLM(JNEW)=RECIP(2*L)*SINE*PLM(J0LD) 
PLM(JNEW-1)=X*PLM(J0LD) 

10 JOLD=JNEW 
IF(LMAX.LE.l) RETURN 
M1MAX=LMAX-1 
DO 20 M1=1,M1MAX 
M=M1-1 
M2=M1+1 
J0LD=Ml*M2/2 
J=J0LD+M1 
DO 20 L=M2,LMAX 
JNEW=J+L 
PLM(JNEW)=RECIP(L+M)*RECIP(L-M) 

1 *((2*L-1)*X*PLM(J)-PLM(J0LD)) 
JOLD=J 

20 J=JNEW 
RETURN 
END 
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PROGRAM 12: GE0M4C 

C GE0M4C CALCULATES ARRAY A,WHICH IS INDEPENDENT OF ZETAS, 
C FOR INTEGRALS (ABI CD),(ABfAD J, AND (ABlABI 
C ARGUMENTS LAP,MAP,ETC. ARE ORBITAL QUANTUM NUMBERS 
C LTOP=LARGEST VALUE ATTAINED BY CLA+LB+LC+LD) 
C NTYPE=NUMBER OF CENTERS 
C NGAB=ONE LESS THAN THE SUBSCRIPT OF THE FIRST 
C GAB FOR LA,LB,MA,MB 
C NGCD=ONE LESS THAN THE SUBSCRIPT OF THE FIRST 
C GCD FOR LC,LD,MC,MD 
C NA=SIZE OF ARRAY A (CALCULATED BY GEOM) 
C INDICES RUN IN THIS ODDER, WITH LAST ONE CHANGING 
C FASTEST - ALPHAI,BETA1,SIGMA1,ALPHA2,BETA2, 
C SIGMA2,LAMBDA1,LAMBDA2,L 
C 

SUBROUTINE GE0M4C(SUMM,OMEGA,LAP,MAP,LBP,MBP,LCP,MCP, 
1 LDP,MDP,LT0P,NA,NTYPE,NGA8,NGCD) 
IMPLICIT REAL*8(A-C,E-H,0-ZI,L0GICAL*1(D) 
C0MM0N/AF/SHAM(30»,GA8(340),GCD(340),A(3548» 
DIMENSION SUMMd > ,0MEGA(1) 
IF(NTYPE-3> 1,2,3 

C 
C INTEGRAL IS TYPE (A8|AB) - LAM8DA1=LAMB0A2=0 

1 LAM1MX=1 
LAM2MX=1 
ASSIGN 46 TO KNTP 
ASSIGN 48 TO KNTYPE 
GO TO 4 

C 
C INTEGRAL IS TYPE (ABjAD) - LAMB0A1=C, 
C LAMBDA2 RUNS FROM 0 TO (SIGMA1+SIGMA2» 

2 LAM1MX=1 
ASSIGN 46 TO KNTP 
ASSIGN 47 TO KNTYPE 
GO TO 4 

C 
C INTEGRAL IS TYPE (ABlCD) -
C LAMBDAl RUNS FROM 0 TO (SIGMAl+SIGMA2», 
C LAM8DA2 RUNS FROM 0 TO (SI6MA1+SIGMA2-LAMBDA1» 

3 ASSIGN 47 TO KNTYPE 
ASSIGN 45 TO KNTP 

C 
4 CONTINUE 

IT=LT0P+1 
LTPR0D=2*IT*(IT+1)*(4*LT0P+3) 
LT1SQ6=6*IT*IT 
IF(LAP.LT.LBP; GO TO 5 
LA=LAP 



www.manaraa.com

167 

MA=MAP 
LB=LBP 
mB=MBP 
GO TO 6 

5 LA=LBP 
MA=MBP 
LB=LAP 
M8=MAP 

C NOW LA.GE.LB 
C 

6 MAMMB =IABS(MA)-IABS(MB» 
IF(MAMMB) 7,8,9 

• 7 MABMAX=IABS(MB) 
MABMIN=IABS(MA) 
MABOIF=-MAMMB 
GO TO 10 

8 MABMAX=IABS(MAl 
MABMIN=MABMAX 
MABDIF=0 
GO TO 10 

9 MABMAX=IABS(MA) 
MABMIN=IABS(MB) 
MA8DIF=MAMMB 

C MABMAX=MAXO(iMAj,IMBI) 
C  M A 6 M I N = M Î N G {  I M A I  ,  I M B M  
C MABOIF=MABMAX-HABMîN 
C 

10 IF(LCP.LT.LOP) GO TO 15 
LC=LCP 
MC=MCP 
LD=LDP 
MD=MDP 
GO TO 16 

15 LC=LOP 
MC=MDP 
LD=LCP 
MD=MCP 

C NOW LC.GE.LD 
C 

16 MCMMD=IABS(MC)-IABS(MD> 
IF{MCMMD) 17,18,19 

17 MCDMAX=IABS{MDI 
MCDMIN=ÎABS(MC» 
MCODIF=-MCMMD 
GO TO 20 

18 MCDMAX=IABS(MC> 
MCDMIN=MCDMAX 
MCDDIF=0 
GO TO 20 

19 MCDMAX=IABS(MCÏ 
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MCDMÎN=IABS(MO» 
MCDDIF=MCMMO 

C MCDMAX=MAXO( IMC! ,1 MDM 
C MCDMIN=MÎNO(IMCI,!MD|> 
C MCDDIF=MCDMAX-MCDMÎN 
C 

2C LAMLB=LA-LB 
LCMLD=LC-LD 
LALB=LA+LB 
LCLD=LC+LD 
LBMA=L8+IABS(MA) 
LAMB=LA+IABS(MB) 
LOMC=LD+ÎABS(MC> 
LCMD=LC+IABS(MD) 
M«AB=IABS(MA|+IABS(M8» 
MMCD=IABS(MC)+IABS(MD) 
LBMMA=Le-ÎABS(MAI 
LAMMB=LA-ÎABS(MB) 
LOMMC=LO-IABS(MC > 
LCMMD=LC-IABS(MD) 
M0D1=MD0<LAL8+MMAB,2 » 
MOD2=MOD(LCLD+MMCD,2) 
IF(MA.LT.O) GO TO 507 
ÎF(MB.LT.O) GO TO 506 
OSGNAB=.TRUE« 
GO TO 510 

506 DSGNAB=.FALSE. 
GO TO 510 

507 IF(MB.LT.O) GO TO 508 
DSGNAB=.FALSE, 
GO TO 510 

508 DSGNAB=,TPUE. 
C DSCNA8=.TRUE. IFF MA AND MB HAVE SAME SIGN (0 IS +î 
C 

510 IF(MC.LT.O) GO TO 517 
ÎF(MD.LT.O) GO TO 516 
DSGNCD=.TRUE« 
GO TO 520 

516 DSGNCD=.FALSE. 
GO TO 520 

517 IF(MD.LT.O) GO TO 518 
D$GNCD=.FALSE. 
GO TO 520 

518 DSGNCD=.TRUE. 
C OSGNCD=,TRUE. IFF MC AND MD HAVE SAME SIGN (0 IS +) 
C 

520 CONTINUE 
JA=0 
JGABP=NGAB 
IA1MIN=8-LB 
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IA1MAX=8+LA 
IA2MIN=8-LD 
IA2MAX=8+LC 
DO 480 IAl=IAiMIN,IAlMAX 
IALPHl=ÎAl-8 
LLAAB=IABS(LAMLB-TALPH1» 
M00AB=M0D(LLAAB,2» 
M1HIT=MÎN0(LBMA+ÎALPH1,LAMB-IALPH1) 
IF(lALPHl.EQ.C) GO TO 521 

C 
C BETAl.NE.O 

igab=2 
DB1E00=.FALSE. 
IGi=l 
ASSIGN 540 TO KBi 
ASSIGN 240 TO KBOl 
GO TO 524 

C 
C FIRST VALUE OF BETAi=0 

521 IGAB=1 
DB1E00=.TRUE, 
IG1=0 
ASSIGN 530 TO KBI 
IF(DSGNAB) GO TO 522 
ASSIGN 251 TO KBOl 
GO TO 524 

522 ASSIGN 240 TO KBCl 
C 

524 CONTINUE 
IB1MIN=IABS(IALPH1)+1 
IB1MAX=LALB-LLAAB+1 
DO 480 IB1=IB1MIN,IB1MAXt2 
IBETAl=IBl-l 
IS1MAX=LALB-IBETA1+1 
03MIN1=.FALSE. 
IF(MABMIN.GT.IBETAI) DBMIN1=.TRUE. 
M0IFB1=MA8DIF-IBETA1 
MSUMB1=MMAB-IBETA1 
MINA=MINO(LAMMB-IALPHI, IBETA1+MAMMB\ 
MINB=MINO(LBMMA+IALPHI,IBETAI-MAMMBI 
L1LO=MAXO(LLAAB,MDIFB1+MOD1I 
IS1MIN=L1L0+1 
M1L0=MAX0(0,-LBMMA-IALPH1,-LAMM8+IALPH1,MDIFB1I 
DELA8=.TPUE. 
IF(MILO.EO.O) GO TO 527 
M1L0M1=M1L0-1 
M1MIN=M1L0 
DM0DM1=,FALSE. 
IF(MOO(M1LO,2).EQ.O) DM0nMl=,TRUE, 
GO TO 528 
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527 M1L0M1=-1 
m1mîn=1 

528 M1HI=MIN0(M1HIT,IBETAl+MMAB» 
IF(LILO.LT.MIHI) GO TO 21 
ASSIGN 23 TO KGl 
ASSIGN 80 TO KJl 
GO TO 22 

21 ASSIGN 24 TO KGl 
LlL0F=LlLQ*(LlL0-2) 

22 GO TO KBl,(530,535,540) 
C 
C BETA1=0 

530 IF(M1LO.EO.O.AND..NOT.DSGNAB) DELAB=.FALSE. 
ASSIGN 535 TO KBl 
GO TO 540 

C 
C BETA! NO LONGER C 

535 ASSIGN 240 TO KBOl 
ASSIGN 540 TO KBl 
IGAB=2 
IG1 = ] 
D61E00=.FALSE. 

5^0 DO 480 ISi=ISlMIN,ISlMAX,2 
JGCDP=NGCD 
ISIG1=IS1-1 
ÎS1P1=IS1+1 

C 
JGABD=M1LQM1*(IS1P1-L1L0) 
GO TO KGl,(23,24) 

23 JT=MlHI*(ISlPl-LlLOI/2 
GO TO 28 

26 IFdSIGl.G-^.MlHI ) GO TO 25 
JT=(ISIGl*ISiPl-LlL0F)/4 
ASSIGN 120 TO KJl 
GO TO 28 

25 IF(MODAB.E0,M0D{M1HI,2)) GO TO 26 
IT=1 
GO TO 27 

26 IT=0 
27 JGTl=IT+LlL0F+MlHI»(MlHI+2) 

JT=(2*ISlPI*MlHI-JGTl)/4 
ASSIGN IOC TO KJl 

28 IF (DBIEOO) GO TO 550 
IF(MILO.EO.O) JGA6D=JGABD/2 
JGABD=2*JT-JGABD 
GO TO 560 

550 IF(0ELA6) JT=JT-JGABD/2 
JGABD=JT 

C JGA8D=NUMBER OF FUNCTIONS GAB 
G FOR GIVEN SET ( I ALPHl, IBETAl , ISIGH 
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560 CONTINUE 
00 470 IA2=IA2MÎN,IA2MAX 
IALPH2=ÎA2-8 
LLACD=IABS(LCMLD-IALPH2) 
MODCD=MOO(LLACO,2) 
M2HÎT=MIN0(LDMC+ÎALPH2,LCMD-IALPH2» 
ÎF(lALPHZ.EO.O) GO TO 620 

C 
C BETA2,NE.O 

IGCD=2 
IG2=1 
DB2EQ0=.FALSE. 
ASSIGN 640 TO KB2 
ASSIGN 242 TO K6002 
ASSIGN 297 TO K8M02 
GO TO 624 

C 
C FIRST VALUE OF BETA2=0 
620 IGCD=1 

IG2=0 
DB2EQ0=.TRUE. 
ASSIGN 630 TO K62 
IF(OSGNCD) GO TO 622 
ASSIGN 680 TO KB002 
ASSIGN 299 TO K8M02 
GO TO 624 

622 ASSIGN 242 TO KB002 
ASSIGN 297 TO KBM02 

C 
624 CONTINUE 

I62MIN=IABS(IALPH2)+1 
IB2MAX=LCL0-LLAC0+1 
DO 470 IB2=IB2MIN,IB2MAX,2 
IBETA2=IB2-1 
IS2MAX=LCLD-IBETA2+1 
DBMIN2=,FALSE. 
IF(MCDMIN.GT.IBETA2) DEMIN2=.TRUE. 
MDIFB2=MC0DIF-IBETA2 
MSUMB2=MMCD-IBETA2 
MINC=MIN0(LCMMD-IALPH2,IBETA2+MCMM0) 
MIND=MIMC(LDMMC+IALPH2tIBETA2-MCMMD) 
L2LO=MAXO(LLACD,MDIFB2+MOD2) 
IS2MIN=L2L0+1 
M2LO=MAX0(0,-LDMMC-IALPH2»-LCMMD+IALPH2,MDIFB2) 
DELCD=.TRUE. 
IF(M2LO.EO.O) GO TO 627 
M2L0M1=M2L0-1 
M2MINP=M2L0 
DMOOM2=.FALSE. 
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IF(M00{M2L0,2).EQ.0) DM0DM2=.TRUE. 
GO TO 628 

627 M2L0M1=-1 
M2MINP=Î 

628 M2HI=«IN0(M2HÎT,IBETA2+MMC0) 
LLOWP=MAXO(«1LO-M2HI,M2LO-VI1HI J 
IF(M00(IABS(LL0WP),2).NE.IABS(M0DAB-M0DCDI) 

1 LL0WP=LL0WP+1 
IF(L2L0.LT.M2HI) GO TO 31 
ASSIGN 33 TO KG2 
ASSIGN 160 TO KJ2 
GO TO 32 

31 ASSIGN 34 TO KG2 
L2L0F=L2L0*(L2L0-2) 

52 GO TO KB2,(630,635,640) 
C 
C BETA2=0 

630 IF(M2L0.EQ.O.AND..NOT.DSGNCD) DELCD=,FALSE. 
ASSIGN 635 TO KR2 
GO TO 640 

C 
C BETA2 NO LONGER 0 

635 ASSIGN 242 TO KBG02 
ASSIGN 297 TO KBM02 
ASSIGN 640 TO KB2 
IGCD=2 
IG2=1 
DB2EQ0=,FALSE. 

C 
640 DO 470 IS2=IS2MIN,IS2MAX,2 

ISIG2=IS2-1 
IS2Pl=IS2+l 

C 
JGCDD=M2L0M1*(IS2P1-L2L0) 
GO TO KG2, (33,34) 

33 JT=M2HI*(IS2Pl-L2LOI/2 
GO TO 38 

34 IF(ISIG2.GT.M2HII GO TO 35 
JT=(ISIG2*IS2Pl-L2L0F)/4 
ASSIGN 200 TO KJ2 
GO TO 38 

35 IF(M0DCD.EQ.M0D(M2HI,2)» GO TO 36 
IT=1 
GO TO 37 

36 IT=0 
37 JGT2=IT+L2L0F+M2HÎ*(M2HI+2J 

JT=(2*IS2Pl*M2HI-JGT2)/4 
ASSIGN ISO TO KJ2 

38 IF(062500» GO TO 650 
IF(M2L0.EQ.C) JGC0D=JGCDD/2 
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JGCDD=2*JT-JGC00 
GO TO 660 

650 IF(DELCO) JT=JT-JGCDD/2 
JGCDD=JT 

C JGCDD=NUMBER OF FUNCTIONS GCD 
C FOR GIVEN SET (IALPH2,IBETA2,ISÎG2» 
C 
660 LLGW=MAX0(LlL0-ISIG2tL2L0-ISIGl»LL0WP)+l 

LMAX=ISIG1+IS2 
LM0D=M0D(LMAX,2> 
GO TO KNTP,(45,46) 

45 LAM1MX=LMAX 
46 DO 460 LAM1=1,LAM1MX 

LAMBD1=LAM1-1 
IT=LAMl-2 
JY1=(LTPROD-IT*(LT1S06-IT*(IT-1)))*LAMBD1/12 
GO TO KNTYPE,(47,48) 

47 LAM2MX=LMAX-LAMBD1 
48 DO 460 LAM2=1tLAM2MX 

LAMBD2=LAM2-1 
IT=LANIBDi+LAMBD2 
LAMSUM=IT+1 
JY12=JY1+(LT1S06-(LAM2-2)»(2*LAMBD2-1))*LAMBD2/6 

1 -LAMSD1*LAMBD2*(IT-1)-IT*IT 
IF(LLOW.LT.LAMSUM) GO TO 50 
LMIN=LLOW 
GO TO 70 

50 IF(M0D(LAMSUM,2).NE.LM0D) GO TO 60 
LMIN=LAMSUM 
GO TO 70 

6C LMIN=LAMSUM+1 
C 
C LMIN=MAX0(LAMBDA1+LAMB0A2,MIL0-M2HI,M2L0-M1HI, 
C L1L0-SIGMA2,L2L0-SIGMA1) 
C (+1 IF NEEDED TO MAKE {LMIN+SIGMA1+SÎGMA2) EVEN) 
C 

70 DO 460 LP=LMIN,LMAX,2 
L=LP-1 
JY12L=JY12+L*L 

C 
C SUBSCRIPT FOR ARRAY SUMM = JY12L +M1 +0R- M2 
C (+L+1 IF REAL PART) 
C 

L1MIN=MAXC(L1L0,L2L0-L,L-ISIG2) 
L1MAX=MIN0(IS1,L+IS2) 
LlDIF=LiMIN-LlLO 

IF(LIDIF.NE.O) GO TO 75 
JGAB=JGABP 
GO TO 150 
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75 JGAB=M1L0M1*L1DIF 
GO TO KJl,(80,100,120) 

80 JT=M1HI*L1DIF/2 
GO TO 130 

100 ÎF(L1MIN-2.LE.M1HI) GO TO 120 
JT=(2*LlMIN*MlHI-JGTl)/4 
GO TO 130 

120 JT=(LlWIN?(LlMIN-2)-LlL0F|/4 
130 IF(DBIEOO) GO TO 140 

IF(MILO.EQ.O) JGAB=JGAB/2 
JGAB=JGABP+2*JT-JGAB 
GO TO 150 

140 IF(DELAB) JT=JT-JGAB/2 
JGAB=JGABP+JT 

C AT THIS POINT JGAB ÎS 1 LESS THAN THE INDEX FOR THE FIRST 
C GAB FUNCTION TO BE USED 
C 

150 JA=JA+1 
SUM1=0,0D0 
L1MIN=L1MIN+1 
00 450 L1P=L1MIN,L1MAX,2 
Ll=LlP-i 
L2MIN=MAX0(L2LCtIA6S(L-L1)) 
L2MAX=MIN0(IS2,L+L1P) 
L2DIF=L2MIN-L2L0 

C 
IP(L2DIF.NE.0) GO TO 155 
JGCDT=JGCOP 
GO TO 220 

155 JGCDT=M2LOM1*L20IF 
GO TO KJ2,(160,180,200) 

160 JT=M2HI*L20IF/2 
GO TO 205 

180 IF(L2MIN-2.LE.M2HI) GO TO 200 
JT=(2*L2MIN*M2HI-JGT2l/4 
GO TO 205 

200 JT=(L2MIN*(L2MIN-2)-L2L0F)/4 
205 IF(DB2EQ0» GO TO 210 

IF(M2L0.E0.G) JGCDT=JGCDT/2 
JGCDT=JGCDP+2*JT-JGCDT 
GO TO 220 

210 IF(DELCD) JT=JT-JGCDT/2 
JGCDT=JGCDP+JT 

C AT THIS POINT JGCDT IS 1 LESS THAN THE INDEX FOR THE 
C FIRST GCO FUNCTION TO BE USED 
C 

220 M1MAX=MIN0(L1 ,M1HI) 
H2MAXP=MIN0<M1MAX,L-M2L0) 
M1MAXM=MIN0(M1MAX,L+M2HI» 
IF(MIMAXP.EO.MIMAXM) GO TO 230 
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ASSIGN 255 TO K«1 
GO TO 235 

230 ASSIGN 262 TO KMl 
ASSIGN 290 TO KL2 
M2MIN=M2L0 

235 SUM2=0.0DC 
L2MIN=L2MIN+1 
IF(MILO.EO.O) GO TO KBOl,(240,2511 
IF(M1MIN.GT.MIMAXMI GO TO 450 
IF(.NOT.DMODMl) GO TO 252 
ISIGN1=-1 
GO TO 253 

C 
c * * * * * * * * * * * * * * * 
c 
C M1=0, SO IMAG.PART OF GAB=0 
C 

240 JGAB=JGAB+1 
CALL DEL0(MSUMBI,MINA,MINB,MAMMB,DSGNAB,DBM:N1,NBR1) 
GO TO (241,251),NBR1 

241 JGCD=JGCDT 
DO 250 L2P=L2MIN,L2MAXt2 
L2=L2P-1 
M2MAX=MIN0(L2 ,M2HI) 
M?MAXM=MIN0(M2MAX,L) 

C 
C M2=0, SO IMAC. PART 0^ GCD=0 

IF(M2L0,EQ.O) GO TO KBCG2,{242,680) 
TF(M2MINP.GT.M2MAXM) GO TO 250 
IF(.NOT.OMODM2) GO TO 2^3 
ISIGN2=-1 
GO TO 244 

242 JGC0=JGCD+1 
CALL DEL0{MSUMB2,MINC,MIND,"CMMD,DSGNCD,D8MIN2,NBR2) 
GO TO (675,680),NBR2 

675 SUM2=SUM2+0MEGA(J0MG(L,Llt0,L2,0))*SUMM(JY12L+LP) 
1 *GCD(JGCD)*C.5D0 

680 IF(M2MAXM,LT.1) GO TO 250 
C 
C LOOP OVER M2.NE.0,WITH Ml.EQ.O 

243 ISIGN2=+1 
244 DO 245 M2=M2MINP,M2MAXM 

JGCD=JGCD+IGCD 
C ISIGN2=(-1)»»M2 

ISIGN2=-ISIGN2 
CALL DELM(M2,MSUMB2,MINC,MIN0,MCMMD,MMCD,MC,MD,DSGNCD, 

1 DB2EQ0,DBMIN2,NBR2) 
GO TO (700,710,720,2451,NSR2 

C 
C GCD HAS NONZERO REAL AND I MAG PARTS 
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700 JYIMAG=JY12L+M2 
TEMP2=SUMM{JYIMAG+LP)*5CD(JGCD-1» 

1 +SUHM(JYIMAG)*GCOCJGCDÏ 
GO TO 730 

C 
C GCD HAS ONLY REAL PART NONZERO 

710 T5MP2=SUMM{JYi2L+M2+LP)*GCD(JGCD-IG2) 
GO TO 730 

C 
C GCD HAS ONLY I MAG PART NONZERO 

720 TEMP2=SUMM(JY12L+M2)*GCD(JGCDÎ 
730 IF(ISIGN2.LT.0) TEWP2=-TEMP2 

SUM2=SUM2+GMEGA(J0MG(L,L1,0,L2,M2I)»TEWP2 
2^5 CONTINUE 
250 JGCD=JGCD+IGCD*(M2MAX-M2MAXM) 

SUM1=SUM1+GAB(JGAB)*SUM2 
251 ÎF(M1MAXM,LT.1) GO TO 450 

C 

c 
C LOOP OVER Ml.NE.O 
C 

252 ISIGN1=+1 
253 DO 430 M1=M1MIN,MIMAXM 

JGAB=JGAB+IGAB 
C ISIGN1=(-1)**M1 

ÎSIGN1=-ISIGN1 
CALL DELM(M1,MSUMB1,MINA,MINB,MAMM8,MMAB,MA,MB,DSGNAB, 

1 DB1EOO,DBMIN1,NBR1) 
GO TO (740,750,760,430),NBRl 

HAS NONZERO REAL AND IMAG PARTS 
ASSIGN 770 TO KDELO 
ASSIGN 800 TO KDEL 
ASSIGN 320 TO KO 
ASSIGN 860 TO KDELMO 
ASSIGN 410 TO KDELl 
GO TO 765 

HAS ONLY REAL PART NONZERO 
ASSIGN 790 TO KDELO 
ASSIGN 820 TO KDEL 
ASSIGN 325 TO KO 
ASSIGN 865 TO KDELMO 
ASSIGN 420 TO KDELl 
GO TO 765 

HAS ONLY IMAG PART NONZERO 
ASSIGN 780 TO KDELO 
ASSIGN 840 TO KDEL 

C 
C GAB 

740 

C 
C GAB 

750 

C 
C GAB 

760 
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ASSIGN 870 TO KDELMO 
ASSIGN 415 TO KDELl 

765 GO TO KMl,<255,2621 
255 IF(MI.GT.MIMAXP) GO TO 260 

ASSIGN 290 TO KL2 
M2MIN=M2L0 
GO TO 262 

260 ASSIGN 295 TO KL2 
ASSIGN 330 TO KM2 
M2MIN=MAX0(M2L0,M1-L » 

262 IF(M0D(M2MIN,2).EQ.1I GO TO 265 
ASSIGN 301 TO KM2MIN 
GO TO 270 

265 ASSIGN 302 TO KM2MIN 
270 SUM2=0.ODO 

SUM3=0.000 
280 JGCD=JGCDT 

DO 400 L2P=L2MIN,L2MAX,2 
L2=L2P-1 
M2MAX=MIN0(L2,M2HI) 
M2MAXM=MIN0(M2MAX,L+M1I 
GO TO KL2t(290,295) 

290 M2MAXP=MIN0(M2MAX,L-M1) 
IF(M2MAXM,FQ.M2MAXP) GO TO 292 
ASSIGN 305 TO KM2 
GO TO 295 

292 ASSIGN 31C TO KM2 
295 IF(M2MIN.E0«0I GO TO 296 

IF(H2MIN.GT.H2MAXM) GO TO 400 
M2MINQ=M2MIN 
GO TO KM2MIN,(301,302) 

296 M2MINQ=1 
ISIGN2=+I 

C 
C M2=0, SO I MAG PART OF GCD=0 

GO TO KBM02,(297,299) 
297 JGCD=JGCD+1 

CALL DEL0(MSUMB2,MINC,MIND,MCMMD,DSGNC0,DBMIN2,NBR2) 
GO TO (298,299),NBR2 

298 WTEMP=OMEGA(JOMG(L,L1,M1,L2,0))*GCD(JGCO) 
IF(ISIGNl.LT.O) WTEMP=-WTEMP 
JYIMAG=JY12L+M1 
GO TO KDELO,(770,790,780) 

C 
C GAB HAS NONZERO REAL AND I MAG PARTS 

770 SUM2=SUM2+WTEMP*SUMM(JYIMAG+LP) 
C 
G GAB HAS NONZERO IMAG PART 

780 SUM3=SUM3+WTEMP*SUMM(JYIMAG) 
GO TO 299 
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C GAB HAS ONLY REAL PART NONZERO 
790 SUV2=SUM2+WTEMP*SUMM(JYIMAG+LP> 
299 IF(M2MAXM,LT.l) GO TO 400 

GO TO 304 
30! ISIGN2=-1 

GO TO 303 
302 ISIGN2=+1 
303 IF(M2MIN.E0.M2L0) GO TO 304 

JGCO=JGCD+IGCD*(M2MIN-M2LO) 
ÎF(M2L0.EQ.0.AND.{.NOT.0B2Ê0G.OR..NOT.OSGNCD)» 

1 JGCD=JGCD-1 
C 
C LOOP OVER M2.ME.C 

304 DO 390 M2=M2MINQTM2MAXM 
C ISIGN2=(-1)**M2 

ISIGN2=-ISÎGN2 
JGCD=JGCD+IGCD 
CALL DELM(M2,MSUM62,MING,MINDrMCMMD»MMCD»MCt MD,OSGNCDt 

1 DB2EQ0,08MIN2,NBR2) 
IF(NBR2.E0.4) GO TO 390 
GO TO KM2, (305,510,330) 

305 IF(M2.GT.M2MAXP) GO TO 330 
C 
C SUM FOR +M2 

310 JYIMAG=JY12L+M1+M2 
JYREAL=JYIMAG+LP 
WTEMP=OMEGA(JOMG(L,LI,Ml,L2,M2)) 
IFdSÎGNl.NE. ISÎGN2 J WTEMP=-WTEMP 
DS1=.TPUE, 
DS2=.TRUE, 
DS3=.FALSE. 
ASSIGN 330 TO KBEEP 

795 TPMP2=C.000 
TEMD3=0.0D0 
GO TO KDEL,(8GO,820,840) 

800 GO TO (805,815,810),NBR2 
C 
C G^B AND GCD HAVE NONZFPO REAL AND ÎMAG PARTS 

805 TEMP2=SUMM(JYREAL)*GC0(JGC0-1) 
TEMP3=SUMM(JYIMAG)*GCD{JGCD-1I 
IF(,N0T,DS2) TEMP3=-TEMP3 

C 
C GAB HAS NONZERO REAL AND IMAG PARTS, 
C GCD HAS NONZERO I WAG PART 

810 TERM=SUMM(JYIMAG)*GCO(JGCD) 
I=(.NOT.OS1) TERM=-TERM 
TEMP2=TEMP2+TERM 
TERM=SUMM(JYREAL »#GCD{JGCD) 
IFf.NOT.DS3) TERM=-TERM 
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TEMP3=TEMP3+TERM 
GO TO 315 

C 
C GA8 HAS NONZERO REAL AND ÎMAG PARTS, 
C GCD HAS ONLY REAL PART NONZERO 

915 TEMP2=SUMM(JYREAL)*GCD(JGCD-IG2) 
TEMP3=SUMN|( JYÎMAGÎ^GCDC JGCD-IG2) 
TF(.NOT.DS2) TEMP3=-TEMP3 
GO TO 315 

820 GO TO (825,835,830),NBR2 
C 
C GAB HAS ONLY REAL PART NONZERO, 
C GCD HAS NONZERO REAL AND IMAG PARTS 

825 TEMP2=SUMM(JYREAL)*GCD(JGCD-1) 
C 
C GAB HAS ONLY REAL PART NONZERO, 
C GCD HAS NONZERO IMAG PART 

830 TERM=SUMM{JYIMAGl*GCD{JGCD» 
IF (.NOT, DSD TERM=-TERM 
T£MP2=TEMP2+TERM 
GO TO 315 

C 
C GAB AND GCD HAVE ONLY REAL PARTS NONZERO 

835 TEMP2=SUMM{JYREAL)*GCD(JGCD-IG2) 
GO TO 315 

840 GO TO {845,855,850),NBR2 
C 
C GAB HAS ONLY IMAG PART NONZERO, 
C GCD HAS NONZERO REAL AND IMAG PARTS 

845 TEMP3=SUMM(JYIMAG)*GCD(JGCD-1) 
IF(.N0T.DS2) TEMP3=-TEMP3 

C 
C GAB HAS ONLY tMAG PART NONZERO, GCD HAS NONZERO IMAG PART 

850 TERM=SUMM(JYPEAL)*GCD(JGCD) 
IF(,N0T.DS3) TERM=-TERM 
TEMP3=TEMP3+TERM 
GO TO 320 

C 
C GAB HAS ONLY IMAG PART NONZERO, 
C GCD HAS ONLY REAL PART NONZERO 

855 TFMP3=SUMM{JYIMAG)*GCD(JGC0-IG2) 
IF{,N0T.DS2) TEMP3=-TEMP3 
GO TO 320 

315 SUM2=SUM2+WTEMP*TEMP2 
GO TO KD,(320,325) 

320 SUM3=SUM3+WTEMp^TEMP3 
325 GO TO KBEEP,(330,390) 

C 
C SUM FOR -M2 

330 M2MM1=M2-M1 
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JYIMAG=JY12L+IABS(M2MM1) 
JYREAL=JYÎMAG+LP 
WTEMP=0%EGA(J0MG(L,L1,M1,L2,-M2)) 
IF{M2MM1) 340,335,345 

335 WTEMP=WTEMP*SUMM(JYREAL» 
IF(ISIGN2,LT.O) WTEMP=-WTEMP 
GO TO KOELMO,(860,865,870) 

860 GO TO (337,339,338),N8R2 
C 
C GAB AND GCD HAVE NONZERO REAL AND ÎMAG PARTS 

337 SUM2=SUM2+WTEMP*GCD(JGCD-1) 
C 
C GAB AND GCD HAVE NONZERO ÎMAG PARTS 

338 SUM3=SUM3+WTEMP*GCD(JGCDI 
GO TO 390 

865 GO TO (339,339,390),NSR2 
C 
C GAB AND GCD HAVE NONZERO REAL PARTS 

339 SUM2=SUM2+WTEMP*GCD(JGCD-ÎG2) 
GO TO 390 

870 GO TO (338,390,338),NBR2 
340 IF(ISIGNl.LT.O) WTEMP=-WTEMP 

DS1=.FALSE. 
DS2=.TRUF. 
GO TO 350 

3^5 IF(ISIGN2.LT,0I WTEMP=-WTEMP 
DS1=.TRUE. 
DS2=.FALSE. 

350 DS3=.TRUE. 
ASSIGN 390 TO KBEED 
GO TO 795 

390 CONTINUE 
400 JGCD=JGCD+IGCD*(M2MAX-M2MAXM) 

C 
C SUM2 IS MULTIPLIED BY THE REAL PART OF GAB 
C SUM3 IS MULTIPLIED BY THE I MAG PART OF GAB 

GO TO KDELl,(410,420,415) 
410 SUM1=SUM1+SUM2*GAB(JGA8-Î) 
43 5 SUM1=SUM1+SUM3*GAB(JGAB) 

GO TO 430 
420 SUM1=SUM1+SUM2*GAB(JGAB-IGl) 
^30 CONTINUE 

C 
c * * *  * * * * * * * *  
C 
450 JGA8=JGAB+IGAB*(MlMAX-MIHAXM) 

A(JA)=SUM1+SUM1 
Ir(M0D{L1.MIN,2). EO.O) A(JA)=-A(JA) 

C INTRODUCE FACTOR (-1)**L1 



www.manaraa.com

181 

^60 CONTINUE 
470 JGCOP=JGCDP+JGCCD 
480 JGABP=JGABP+JGABO 

NA=JA 
RETURN 
END 

PROGRAM 13: GE0M3C 

C GECM3C CALCULATES ARRAY A, WHICH IS INDEPENDENT OF ZETAS, 
C FOR INTEGRALS (AAICD) AND (AAIAD) 
C ARGUMENTS LAP,MAP,ETC. ARE ORBITAL QUANTUM NUMBERS 
C LTOP=LAPGEST VALUE ATTAINED BY (LA+LB+LC+LD» 
C NTYPE=NUMBER OF CENTERS 
C NGAB=ONE LESS THAN THE SUBSCRIPT OF THE FIRST 
C GAB COR LA,LB,MA,MB 
C NGCD=ONE LESS THAN THE SUBSCRIPT OF THE FIRST 
C GCD FOR LC,LD,MC,MD 
C NA=SIZE OF ARRAY A (CALCULATED BY GEOM) 
C INDICES RUN IN THIS ORDER, WITH LAST ONE CHANGING 
C FASTEST - SIGMA1,ALPHA2,BETA2,SIGMA2, 
C LAMBCA2,L 
C 

SUBROUTINE GE0M3C(SUMM,OMEGA,LAP,MAO,LBP,MBP,LCP,MCP, 
1 LOP,MDP,LTOP,NA,NTYPE,NGAB,NGCD) 
IMPLICIT REAL*8(A-C,E-H,n-Z),L0GICAL*1(D; 
COMMON/AF/SHAM(30I,GA6(340),GCD(340),A(3548) 
DIMENSION SUMM(I),OMEGA(II 
IF(NTYPE.LT. 3) GO TO 2 
ASSIGN 47 TO KNTYPE 
GO TO 3 

2 ASSIGN 48 TO KNTYPE 
LAM2MX=1 

3 IT=LT0P+1 
LT1S06=6*IT*IT 
IF(LAP.LT.LBP) GO TO 5 
LA=LAP 
MA=MAP 
LB=LBP 
M3=MPP 
GO TO 6 

5 LA=LBP 
MA=MBP 
LB=LAP 
MB=MAP 

C NOW LA.GEoLB 
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M1L0=IABS(IABS(MA)-IABS(MB)) 
M1HÎ=ÎA6S(MA)+IABS(MB) 
IF(M0D{M1L0,2).EQ,0) GO TO 7 
ISÎGNi=-l 
GO TO 920 
ISIGN1=+1 
IF(M1L0.EQ,M1HIV GO TO 940 
DM1EQ=.FALSE. 
GO TO 10 
DM! EQ=<, TRUE. 
IF(LCP.LT.LDP) GO TO 15 
LC=LCP 
MC=MCP 
LD=LDP 
MO=MDP 
GO TO 26 
LC=LOP 
MC=MDP 
LD=LCP 
MD=MCP 

C NOW LC.GE.LD 
C 

16 N!CMMD=IABS(MC)-IABS(MD) 
IF(MCMMD) 17,18,19 

17 MCDMAX=IAeS(MD) 
MCDMIN=IABS(MC) 
MCD0IF=-N!CMMD 
GO TO 20 

IS MCDMAX=IABSCMC) 
MCOMIN=MCDMAX 
MCDDIF=0 
GO TO 20 

19 MCDMAX=IA8S(MCI 
MCDMIN=IABS(MD) 
MCDDIF=V1CMMD 

C MCDMAX=«AXO(IMCI,IMD)) 
C MCDMIN=MINO(IMCI,I MOI) 
G MCDOIF=MCOMAX-MCDMÎN 
C 

20 LAMLB=LA-LB 
LCMLD=LC-LD 
LALB=LA+LB 
LCLO=LC+LD 
LOMC=LO+IABS(MCI 
LCMO=LC+IABS{MDI 
MMC0=IA8S(MC)+IABS(MD) 
LDMMC=LD-IABS(MC) 
LCMMD=LC-IA8S(MD) 
M0Dl=M00(LAL8+MlL0t2) 

7 
920 

940 
10 

15 
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M0D2=«0D(LCLD+MMCD,2) 
IF(MA.LT.O) GO TO 507 
IF(MB.LT.O) GO TO 506 
GO TO 508 

506 DSGNAB=,FALSE. 
GO TO 510 

507 IF(MB.LT.O) GO TO 508 
GO TO 506 

508 OSGNAB=.TRUE. 
C DSGNA8=.TRUe. IFF MA AND MB HAVE SAME SIGN (0 IS +) 
C 

510 IF(MC.LT.O) GO TO 517 
IF(MD.LT.O) GO TO 516 
GO TO 518 

516 DSGNCD=.FALSE. 
GO TO 520 

517 IF(MD.LT.O) GO TO 518 
GO TO 516 

518 DSGNCD=.TRUE. 
C DSGNCD=.TRUE. IFF MC AND MD HAVE SAME SIGN (0 IS +) 
C 

520 IF(M1L0.5Q.O) GO TO 522 
ASSIGN 253 TO KAMI 
DM10N=.FALSE-
GO TO 525 

522 IFtDSGNAB» GO TO 523 
ASSIGN 430 TO KAMI 
0M10N=,TRUE. 
GO TO 525 

523 ASSIGN 240 TO KAMI 
DM10N=.FALSE. 

C 
C DM10N=.TRUE, IFF MA. EO.-MB, NE.O 
C 

525 CONTINUE 
JA=0 
JGABP=NGA? 
IA2MIN=8-LD 
IA2MAX=8+LC 
MOOAB=MOD(LALB,2I 
L1L0=MAXC(LAMLB,MlLO+MODl) 
IF(LILO.GE.MIHI) GO TO 530 
DL1GE=.FALSE. 
GO TO 535 

530 DL1GE=,TRUE. 
535 CONTINUE 

C 
C ALPHA1=BETA1=0 BECAUSE A=B 
C 

IS1MIN=L1L0+1 
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IS1MAX=LALB+1 
DO Ago ÎSl=ISlMIN,ÎSiMAX,2 
JGCOP=NGCO 
ISÎG1=IS1-1 
IS1P1=TS1+1 

C 
IF(DMIEQ.OR.ISIGI.LT.MIHI) GO TO 25 
IF(DLIGE) GO TO 23 
IF(DMION) GO TO 22 
ASSIGN 100 TO KJl 
JGTI=(MlHI+M001+LlLO)/2 
JGABD=TSloi-JGTl 
GO TO 28 

22 ASSIGN 110 TO KJl 
JGABD={ISIGl-MlHI-M0Dl)/2+l 
GO TO 28 

23 IF(DMION) GO TO 26 
ASSIGN 120 TO KJl 
JGABD=IS1P1-L1L0 
GO TO 28 

25 IF(DMION) GO TO 27 
26 ASSIGN 80 TO KJl 

JGABD=(ISIRl-LlL0)/2+l 
GO TO 28 

27 ASSIGN 73 TO KJl 
JGAB0=0 

28 CONTINUE 
C JGABD=NUMBER OF FUNCTIONS GAB FOR GIVEN ÎSIG1 
C 

DO 470 IA2=IA2MIN,IA2MAX 
IALPH2=IA2-8 
LLACD=IABS(LCMLD-IALPH2) 
MODCD=MOD(LLACD,2) 
M2HIT=MIN0(LDMC+IALPH2,LCMD-IALPH2) 
IF(IALPH2.E0.0) GO TO 620 

C 
C BETA2.NE.0 

IGCD=2 
IG2=1 
0B2EQ0=.FALSE. 
ASSIGN 640 TO KB2 
ASSIGN 242 TO K6002 
ASSIGN 297 TO KBM02 
GO TO 624 

G 
C FIRST VALUE OF BETA2=0 
620 IGC0=1 

IG2=0 
DB2EQ0=.TRUE. 
ASSIGN 630 TO KB2 
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IF(DSGNCD) GO TO 622 
ASSIGN 680 TO KB002 
ASSIGN 299 TO KBM02 
GO TO 624 

622 ASSIGN 242 TO KB002 
ASSIGN 297 TO KBM02 

C 
624 CONTINUE 

IB2MIN=IABS(IALPH2)+1 
IB2MAX=LCLD-LLAC0+1 
DO 470 IB2=IB2MIN»IB2MAX,2 
IBETA2=IB2-1 
IS2MAX=LCL0-IBETA2+1 
DBMIN2=.FALSE. 
IF{MC0MIN,GT,IBETA2) DBMIN2=»TRUE. 
MOIFB2=MCDDIF-IBETA2 
MSUMB2=MMC0-I8ETA2 
MINC=MIN0{LCMMD-IALPH?,I8ETA2+MCMMD) 
MIND=MINO(LDMMC+IALPH2,IBETA2-MCMMD) 
L2L0=MAX0(LLACD,MDIFB2+M002) 
IS2MIN=L2L0+I 
M2L0=MAX0{0,-LDMMC-IALOH2,-LCHMD+IALPH2TMDIF82) 
DELCD=.TRUE. 
IF{M2L0.EO.O) GO TO 627 
M2L0Mi=M2L0-l 
M2MINP=M2L0 
DM0DM2=.FALSE. 
IF(M0D(M2L0,2».E0.0> DMOOV2=. TRUE. 
GO TO 628 

627 M2L0M1=-1 
M2MINP=1 

628 M2HI=MING(M2HIT,ÎBETA2+MMC0J 
LLOWP=MAXO(M1LO-M2HI,M2LO-M1HI) 
IF(MOD(IABS(LL0WP),2).NE.lABS(MODAB-MODCD)) 

1 LL0WP=LL0WP+1 
IP(L2L0.LT.M2HI) GO TO 31 
ASSIGN 23 TO KG2 
ASSIGN 160 TO KJ2 
GO TO 32 

31 ASSIGN 34 TO KG2 
L2L0F=L2L0*(L2L0-2) 

32 GO TO KB2,(630,635,640) 
C 
C BETA2=0 

630 IF(M2LO.EQ.O.ANO..NOT.DSGNCD) OELCD=.FALSE. 
ASSIGN 635 TO KB2 
GO TO 640 

C 
C BETA2 NO LONGER 0 

635 ASSIGN 242 TO KBC02 



www.manaraa.com

186 

ASSIGN 297 TO KBM02 
ASSIGN 640 TO KB2 
igc0=2 
IG2=1 
D82EQ0=.FALSE. 

C 
640 DO 470 IS2=IS2MIN,IS2MAX,2 

ISIG2=IS2-1 
IS2Pl=IS2+i 

C 
JGCDD=M2L0M1*(IS2P1-L2L0) 
GO TO KG2, (33,341 

33 JT=M2HI*(IS2Pl-L2L0)/2 
GO TO 38 

34 IF(ISIG2.GT.M2HI) GO TO 35 
JT=(ISIG2*IS2Pl-L?L0F)/4 
ASSIGN 200 TO KJ2 
GO TO 38 

35 IF(M0DCD.EQ.M0D(M2HI,2)) GO TO 36 
IT=1 
GO TO 37 

36 IT=0 
37 JGT2=IT+L2L0F+M2HI*(M2Hl+2) 

JT=(2*IS2Pl*M2HI-JGT2)/4 
ASSIGN 180 TO KJ2 

38 IF(DB2E00) GO TO 650 
IF(M2L0.EQ.O) JGCDD=JGCDD/2 
JGCDD=2*JT-JGCDD 
GO TO 660 

650 IF(DELCD) JT=JT-JGCDD/2 
JGCDD=JT 

C JGCDD=NUMBER OF FUNCTIONS GCD 
C FOR GIVEN SET (IALPH2,IBETA2tISIG2) 
C 

660 LLOW=MAXO(LlLO-ISIG2tL2LO-ISIGltLLOWPJ+I 
LMAX=ISIG1+IS2 
LM0D=M0D(LMAX,2) 
GO TO KNTYPE,(47,48) 

C 
C INTEGRAL IS TYPE (AAlCD) -
C LAMBDA2 RUNS FROM 0 TO (SIGMAI+SIGMA2) 

47 LAM2MX=LMAX 
C 
Ç STMNT 47 IS SKIPPED IF INTEGRAL IS TYPE (AA|AD) -
C LAMBDA2=0 

48 DO 460 LAM2=1,LAM2MX 
LAMRD2=LAM2-1 
JY12=(LTlS06-(LAM2-2)»(2*LAMB02-1IKLAMB02/6 

1 -LAMBD2*LAMBD2 
IF(LL0W.LT.LAM2) GO TO 50 
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LMIN=LLOW 
GO TO 70 

50 I«={MOO(LAM2,2l«NE.LMOD) GO TO 60 
LMIN=LAM2 
GO TO 70 

60 LMIN=LAM2+1 
C 
C LMIN=MAX0(LAM8DA2,M1L0-M2HI,H2L0-MlHI,LlL0-SIGHA2t 
C L2L0-SIGMA1) 
C (+1 IF NEEDED TO MAKE (LMÎN+SIGMA1+SIGHA2) EVEN) +1 
C 

70 DO 460 LP=LMIN,LMAX,2 
L=LP-1 
JY12L=JY12+L*L 

C 
C SUBSCRIPT FOR ARRAY SUM» = JY12L +M1 +0R- M2 
C (+L+1 IF REAL PART) 
C 

LMM2LO=L-M2LO 
LPM2HI=L+M2HI 
L1MIN=MAXO(L1LO,L2LO-L,L-ISIG2) 
L1MAX=MIN0(TS1,L+IS2) 
L1DIF=L1MIN-L1L0 

C 
IF(LIDIF.NE.O) GO TO 75 

73 JGAB=JGABP 
GO TO 150 

75 GO TO KJ1t(73,80,100,110,120» 
80 JGAB=JGABP+LlDIF/2 

GO TO 150 
100 IF(LlMIN-2.LT.MiHl) GO TO 80 

JGAB=JGABP+L1MIN-JGT1 
GO TO 150 

110 IF (L1MIN-2.LT.M1HI) GO TO 73 
JGAB=JGABP + ( LIMI N-Ml HI-MODH/2 
GO TO 150 

120 JGAB=JGABP+L1DIF 
C AT THIS POINT JGAB IS 1 LESS THAN THE INDEX FOR THE FIRST 
C GAB FUNCTION TO BE USED 
C 

150 JA=JA+1 
SUM1=O.ODO 
LiMIN=LlMIN+i 
DO 450 LiP=LlMIN,LlMAX,2 
L1=L1P-1 
L2MIN=MAXO(L2LOtIABS(L-L1)) 
L2MAX=MIN0(IS2,L+L1P» 
L2DIF=L2MTN-L2L0 

C 
IF(L20IF.NE.O) GO TO 155 
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JGCDT=JGCDP 
GO TO 235 

155 JGC0T=NI2L0M1*L20IF 
GO TO KJ2,(160,180,200) 

160 JT=M2HÎ*L2DÎF/2 
GO TO 205 

180 IF(L2MIN-2,LE,M2HI) GO TO 200 
JT=(2*L2MIN*M2HI-JGT2)/4 
GO TO 205 

200 JT=(L2MIN*(L2MIN-2)-L2L0F)/4 
205 IF(DB2EQ0) GO TO 210 

IF(M2L0.EO.O) JGCDT=JGC0T/2 
JGCOT=JGCOP+2*JT-JGCDT 
GO TO 235 

210 IF(DELCD» JT=JT-JGCDT/2 
JGCDT=JGCDP+JT 

C AT THIS POINT JGCDT IS 1 LESS THAN THE INDEX FOR THE 
C FIRST GCD FUNCTION TO BE USED 
C 

235 SUM2=O.ODO 
L2MIN=L2MIN+1 
GO TO KAMI,(240,253,430) 

C 
c* » * * * .* * * * » * * * * * 
C 
C M1=0, SO IMAG.PART OF GAB=C 
C 

240 JGAB=JGAB+1 
241 JGCD=JGCOT 

DO 250 L2P=L2MIN,L2MAX,2 
L2=L2P-1 
M2MAX=MIN0(L2 ,M2HI» 
M2MAXM=MINC(M2MAX,L) 

C 
C M2=0, SO IMAG, PART OF GCD=0 

IF(M2L0.EO.O) GO TO KB002,(242,680) 
IF(M2MINP.GT.M2MAXM) GO TO 250 
IF(.NGT.0M0DM2) GO TO 243 
ISIGN2=-1 
GO TO 244 

242 JGCD=JGCD+1 
CALL OELO(MSUMB2,MINC,MIND,MCMMD,DSGNCD,DBMIN2,NBR2) 
GO TO (675,680>,NBR2 

675 SUM2=SUM2+0MEGA(JOMG(L,L1,0,L2,0))*SUMM(JY12L+LP) 
1 *GCD(JGCO|*0.5DO 

680 IF(M2MAXM.LT.l) GO TO 250 
C 
C LOOP OVER M2.NE, 0,WITH Ml.EQ.O 

243 ISIGN2=+1 
244 DO 245 M2=M2MINP,M2MAXM 
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JGCD=JGCD+IGCD 
C ISIGN2=(-l)**M2 

ISIGN2=-ISIGN2 
CALL DELM(M2,MSUMB2,MINC,MIND,MCMMD,MMCD,MC,MD,DSGNCD, 

1 OB2EOC,DBMIN2,NBR2) 
GO TO (700,710,720,245),NBR2 

C 
C GCD HAS NONZERO REAL AND IMAG PARTS 

700 JYIMAG=JY12L+M2 
TEMP2=SUMM(JYIMAG+LP)*GCD(JGCD-1) 

1 +SUMM{JYIMAG>*GCD(JGCD) 
GO TO 730 

C 
C GCD HAS ONLY REAL PART NONZERO 

710 TEMP2=SUMM(JY12L+M2+LPJ*GCD(JGC0-IG2) 
GO TO 730 

C 
C GCD HAS ONLY IMAG PART NONZERO 

720 TEMP2=SUMM(JYi2L+M2)*GCD(JGCD) 
730 IF(ISIGN2.LT.0) TEMP2=-TEMP2 

SUM2=SUM2+0MEGA(J0MG(L,L1,0,L2,M2)#*TEMP2 
245 CONTINUE 
250 JGCD=JGCD+IGCD*(M2MAX-M2MAXM» 

SUM1=SUM1+GAB(JGAB)*SUM2 
GO TO 430 

C 
C  »  *  * * * * * * * *  *  *  *  *  *  
c 
C Ml.NE.O 
C 
253 M1=M2L0 

C SUM FOR M1=M1L0=I|MA|-lMB|I 
ASSIGN 430 TO KMl 
JGAB=JGAB+1 

255 Ir(Ml.GT.LMM2L0) GO TO 260 
ASSIGN 290 TO KL2 
M2MIN=M2L0 
GO TO 262 

260 ASSIGN 295 TO KL2 
ASSIGN 330 TO KM2 
M2MIN=MAXC(M2L0,M1-L) 

262 IF(M0D(M2MIN,2).E0.1) GO TO 265 
ASSIGN 301 TO KM2MIN 
GO TO 270 

265 ASSIGN 302 TO KM2MIN 
270 SUM2=Q.0D0 

SUM3=0.000 
280 JGCO=JGCDT 

DO 400 L2P=L2MIN,L2MAX,2 
L2=L2P-1 

< 
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M2MAX=MIN0(L2TM2HÎ) 
M2MAXM=MIN0(M2MAX»L+Ml) 
GO TO KL2,(290,2951 

290 M2MAXP=MIN0(M2MAX,L-M1) 
IF(M2MAXM.E0.M2MAXP) GO TO 29? 
ASSIGN 305 TO KM2 
GO TO 295 

292 ASSIGN 310 TO KM2 
295 IF(M2MIN.cO.O) GO TO 296 

IF(M2MIN.GT*M2MAXM) GO TO 400 
M2MIN0=M2MIN 
GO TO KM2MIN,(301,302) 

296 M2MINQ=1 
ISIGN2=+1 

C 
C M2=0, SO I MAG PART OF GCD=0 

GO TO KBM02,(297,299) 
297 JGCD=JGC0+1 

CALL DEL0(MSUMB2,MINC,MIND,MCMMD,DSGNCD,DBKIN2,NBR2» 
GO TO (298,299$,NBR2 

298 WTEMP=OMEGA(J0MG(L,L1,M1,L2,0))*GCO(JGCD) 
IF(ISIGN1.LT,0) WTEMP=-WTEMD 
JYIMAG=JY12L+M1 
IF(DSGNAB) GO TO 790 

C 
C GAB HAS ONLY IMAG PART NONZERO 

SUM3=SUM3+WTE«<P*SUMM( JYIMAG) 
GO TO 299 

C 
C GAB HAS ONLY REAL PART NONZERO 

790 SUM2=SUM2+WTEMP*SUMM(JYIMAG+LP» 
299 IF(M2MAXM.LT.l) GO TO 400 

GO TO 304 
301 ISIGN2=-1 

GO TO 303 
302 ISIGN2=+1 
303 IP(M2MIN.E0.M2L0) GO TO 304 

JGCD=JGCD+IGCD*(M2MIN-M2L0) 
IF(M2L0.EO.O.AND.(,NOT.0B2EQ0.OR..NOT.DSGNCD)) 

1 JGCD=JGC0-1 
C 
C LOOP OVER M2.NE.0 

30^ DO 390 M2=M2MINQ,M2MAXM 
C ISIGN2=(-1)**M2 

ISÎGN2=-I$ÎGN2 
JGCD=JGCD+IGCD 
CALL DELM(M2,MSUMR2,MÎNC,MIND,MCMMD,MMCD,MC,MO,DSGNCD, 

1 OB2EQO,DBMIN2,NBR2) 
IF(NBR2.EQ.4) GO TO 390 
GO TO KM2, (305,310,330) 
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305 IF(M2.GT.M2MAXPI GO TO 330 

C 
C SUM PGR +M2 

?10 JYIMAG=JY12L+M1+M2 
JYREAL=JYIMAG+LP 

C ISIGN1=(-1)**M1 
WTEMP=OMEGA(J0MG(L,L1,M1,L2,M2)) 
IF(ÎSIGNl.NE.ISIGN2) WTEMP=-WTEMP 
DS1=.TRUE, 
DS2=.TRUE. 
0S3=.FALSE. 
ASSIGN 330 TO KBEEP 

795 TEMP2=0.000 
TEMP3=0.CDC 
IF(.NOT.DSGNAB) GO TO 8^0 
GO TO (825,835,830),N8R2 

C 
C GAB HAS ONLY PEAL PART NONZERH, 
C GCD HAS NONZERO REAL AND IMAG PARTS 

825 TEMP2=SUMM( JYREAL)=«=GCD( JGCO-1 ) 

C 
C GAB HAS ONLY REAL P A R T  NONZERO, GCO HAS NONZERO IMAG PART 

830 TERM=SUMM(JYIMAG)*GC0(JGCD) 
IF(.NOT.DSl) TERM=-TERM 
TEV1P2=TEMP2+TERM 
GO TO 315 

C 
C GAB AND GCD HAVE ONLY REAL PARTS NONZERO 

835 TEMP2=SUMM(JYREALI*GCD(JGCD-IG2) 
315 SUM2=SUM2+WTEMP*TEMP2 

GO TO 325 
840 GO TO (845,855,850»,NBR2 

C 
C GAR HAS ONLY IMAG PART NONZERO, 
C GCD HAS NONZERO REAL AND IMAG PARTS 

8^5 T5MP3=SUMM(JYIMAG)*GC0(JGC0-1) 
IF{,N0T.0S2) TEMP3=-TEMP3 

r 

C GAB HAS ONLY IMAG PART NONZERO, 
C GCD HAS NONZERO IMAG PART 

850 TERM=SUMM(JYREAL)*GCD(JGCD) 
IF{.NOT.DS3) TFRM=-TERM 
TEMP3=TEMP3+TERM 
GO TO 320 

C 
C GAR HAS ONLY IMAG PART NONZERO, 
C GCD HAS ONLY REAL PART NONZERO 

855 TEMP3=SUMM{JYIMAG)*GCD(JGC0-IG2) 
IF(.N0T.DS2) TEMP3=-TEMP3 

320 SUM3=SUM3+WTEMP*TEMP3 
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325 GO TO KPEEP,(320,390) 

C 
C SUM FOR -M2 

3?0 M2MM1=M2-M1 
JYIV.AG=JY12L+IABS(M2MM1 ) 
JYREAL=JYIMAG+LP 
WTEMP=0MEGA(J0MG(L,L],M1,L2,-M2)) 

IF(M2MM11 340,335,345 
335 WTEMP=WTEMP*SUMM(JYREAL) 

IF(ISIGN2.LT.O) WTEMP=-WTEMP 
IF(,N0T. DSGMAB) GO TO 870 
GO TO (339,339,390), N8R2 

C 
C GAB AND CCD HAVE NONZERO REAL PARTS 

339 SUM2=SUM2+WTEMP*GCD(JGCD-ÎG2» 

GO TO 390 
870 GO TO (338,39C,338),NBR2 

C 
C GAB AND GCO HAVE NONZERO IMAG PARTS 

338 SUM3=SUM3+WTENIP*GCD( JGCD) 

GO TO 390 
340 IF(ISIGNl.LT.O) WTEMP=-WTEMP 

DS1=.FALSE. 
DS2=.TRUF. 

GO TG 350 
3^5 IF(ISIGN2.LT.C) WTEMP=-WTEMP 

DS1=.TRUF. 
DS2=. FALSE. 

350 DS3=,TRUE. 
ASSIGN 390 TO KBEEP 
GO TO 795 

390 CONTINUE 
400 JGCO=JGCD+IGCD*(M2MAX-M2MAXM) 

C 
C SUM2 IS MULTIPLIED BY THE REAL PART OF GAB 
C SUM? IS MULTIPLIED BY THE IMAG PART OF GAB 

IF(DSGNAB) GO TO 420 
SUM1=SUM1+SUM3*GAB{JGAB) 
GO TO KMl,(430,450) 

420 SUM1=SUK1+SUM2*GAB(JGAB) 
GO TO KMl,(430,650) 

^30 IF(DMIEQ.OR.LI.LT.MIHI) GO TO 450 
JGAB=JGAB+1 
IF(M1HI.GT.LPK2HI) GO TO 450 
M1=M1HI 
ASSIGN 450 TO KMl 

C SUM FOR M1=M1HI=I!MA1+|MB|| 

GO TO 255 
C 
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C 
450 CONTINUE 

A(JA)=SUM1+SUM1 
IP(MCD{L1MIN,2K. EO.O) A(JA)=-A(JA) 

C INTRODUCE FACTOR 
C 

460 CONTINUE 
470 JGCDP=JGCOP+JGCDD 
480 JGABP=JGABP+JGABD 

N4=JA 
RETURN 
END 

PROGRAM 14: GE0M2C 

C GE0M2C CALCULATES ARRAY A, WHICH IS INDEPENDENT OF ZETAS, 
C FOP INTEGRAL (AAlCCI 
C ARGUMENTS LAP,MAP,ETC, ARE ORBITAL QUANTUM NUMBERS 
C NGA8=0NE LESS THAN THE SUBSCRIPT OF THE FIRST 

C GAB FOR LA,LB,MA,MB 
C NGCD=ONE LESS THAN THE SUBSCRIPT OF THE FIRST 
C GCD FOR LC,LD,MC,MO 
C NA=SîZE OF ARRAY A (CALCULATED BY GEOHI 
C INDICES RUN IN THIS ORDER, WITH LAST ONE CHANGING 

C FASTEST - SIGMA1,SIGMA2,L 
C 

SUBROUTINE GEDM2C{SUMM,OMEGA,LAP,MAP,L6P,MBP,LCP,MCP, 

1 LDP,MDP,NA,NGAB,NGCD) 
IMPLICIT REAL*8(A-C,E-H,0-Z),L0GICAL*1(D) 
COMMON/AF/SHAM(30),GA6(340),GCD(340>,A(3548) 
DIMENSION SUMHd ) ,0MEGA(1 ) 
IFILAP.LT.LBP) GO TO 5 
LA=LAP 
MA=MAP 

LB=LBP 
M8=MBP 

GO TO 6 
5 LA=LBP 

MA=MBP 
LB=LAP 
MB=MAP 

C NOW LA.GE.LR 
C 

e M1L0=IABS(IABS(MA)-ÎABS(MB)) 
M1HI=IABS(MA)+IABS(M8) 

IF(MOD(M1LO,2).EO.O) GO TO 7 
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ÎSIGN1=-1 
GO TO 920 

7 ISIGN1=+1 
920 IF(M2L0.E0.M1HÎ) GO TO 940 

DM1EQ=-FALSE, 
GO TO 10 

940 D%1EQ=.TRUE. 
10 IF(LCP.LT.LDP) GO TO 15 

LC=LCP 
MC=MCP 
LD=LDP 
MD=MDP 
GO TO 16 

15 LC=LDP 
YC=MDP 
LD=LCP 
MO=MCP 

C MOW LC.GE.LD 
C 

16 M2L0=IABS( IA8S(MCJ-IA8S(MDn 
M2HI=IABS(MC)+IABS(M0) 
ÎF(MOD(M2L0T2).EQ,0) GO TO 17 
ISIGN2=-1 
GO TO 970 

17 ISIGN2=+I 
970 IF(M2L0. E0.M2HI » GO "TQ 990 

0M2EQ=.FALSE. 
GO TO 20 

990 DM2EQ=.TRUE, 
20 LAMLB=LA-LB 

LCMLD=LC-LO 
LALB=LA+LB 
LCLD=LC+LD 
MOD1=MOD(LALB+MILO,2) 
M0D2=M0D(LCLD+M2L0,2) 
IF(MA.LT.O) GO TO 507 
IF(MB.LT,0) GO TO 506 
GO TO 508 

506 DSGNAB=.FALSE. 
GO TO 510 

507 IF(MB.LT.O) GO TO 508 
GO TO 506 

5C8 DSGNAB=.TRUE. 
C NS6NAB=.TRUE, IFF MA AND MB HAVE SAME SIGN (0 IS +) 
C 
510 IF(MC.LT.O) GO TO 517 

IF(MD.LT.O) GO TO 516 
GO TO 518 

516 DSGNCD=.FALSE. 
GO TO 520 
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517 IF(MD,LT.0) GO TO 518 

GO TO 516 
518 OSGNCD=.TRUE. 

C OSGNCD=.TRUE. IFF MC AND MD HAVE SAME SIGN (0 IS +> 

C 
520 IF(MILO.EQ.O) GO TO 522 

ASSIGN 253 TO KAMI 
DM10N=,FALSE. 
GO TO 525 

522 IF(DSGNAB) GO TO 523 
ASSIGN 430 TO KAMI 
OM10N=.TPUE. 

GO TO 525 
523 ASSIGN 240 TO KAMI 

DM10N=.FALSE. 

C 
C DM10N=.TRUE. IFF MA. EQ.-MB.NE.C 

C 
525 IF(M2L0.E0,0) GO TO 527 

ASSIGN 244 TO KA0M2 
ASSIGN 300 TO KAMM2 
DM2CN=.FALSE. 

GO TO 529 
527 IF(DSGNCD) GO TO 529 

ASSIGN 248 TO KA0M2 

ASSIGN 3«0 TO KAMM2 
DM20N=.TRUE. 

GO TO 529 
528 ASSIGN 242 TO KA0M2 

ASSIGN 296 TO KAMM2 
DM20N=.FALSE. 

C 
C DM20N=.TRUE, IFF MC. EQ.-MD.NE.O 

C 
529 CONTINUE 

JA=0 

JGABP=NGAB 
M0DAB=M0D(LALB,2) 
L1LO=MAXO(LAMLB,M1LO+MODl) 
IF(LILO.GE.MIHI) GO TO 530 
DL1GE=.FALSE. 
GO TO 535 

530 DL1GE=.TPUE. 
535 CONTINUE 

C 
C ALPHA1=BETA1=0 BECAUSE A=B 

C 
IS1MIN=L1L0+1 
IS1MAX=LAL8+1 
M0DC0=M0D(LCL0,2) 
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L2L0=MAX0(LCMLOÏ M2L0+M0D2) 
IF(L2L0.GE.M2HI) GO TO 630 
0L2GE=.FALSE. 

GO TO 635 
630 0L2GE=.TRUE. 
635 CONTINUE 

IS2MIN=L2L0+1 
IS2MAX=LCLD+1 
LL0WP=MAX0(M1L0-M2HI,M2L0-M1HÎ) 
IF(LLOWP.LT.O) GO TO 640 
ÎF(MOD(IABS(LLOWP»,2).NE,IABS(MODA3-MOOCDI) 

1 LL0WP=LL0WP+2 
GO TO 540 

640 IF(MODAS.EQ.MODCD) GO TO 645 
LL0WP=1 
GO TO 540 

645 LLOWP=2*MOD(IABS(LLOWD),2) 

540 DO 480 IS1=IS1MIN,IS1MAX,2 
JGCDP=NGCO 
ISIG1=IS1-1 
IS1P1=IS1+1 

C 
IF(DM1E0.0P,ISIG1.LT.MIHI) GO TO 25 

IF(OLIGE) GO TO 23 
IF(OMiONI GO TO 22 

ASSIGN IOC TO KJl 
JGTl=(MlHI+M0Dl+LlL0>/2 
JGABD=IS1P1-JGT1 
GO TO 28 

22 ASSIGN 110 TO KJl 
JGABD=(I$ÎGi-MîHÎ-M0Di)/2+l 
GO TO 28 

23 IF(0M10NI GO TO 26 

ASSIGN 120 TO KJl 
JGABD=IS1P1-L1L0 
GO TO 28 

25 IF(DMION) GO TO 27 
26 ASSIGN 80 TO KJl 

JGA8D=(ISIGl-LlL0)/2+l 
GO TO 28 

27 ASSIGN 73 TO KJl 
JGABD=0 

28 CONTINUE 
C JGABD=NUMBER OF FUNCTIONS GAB FOR GIVEN ISIGl 

C 
C ALPHA2=%ETA2=0 BECAUSE C=D 

C 
DO 470 IS2=IS2MIN,IS2MAX,2 
ISIG2=IS2-1 
IS2P1=IS2+1 
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IF(DM2EQ.0R.ISIG2.LT.M2HI) GO TO 35 
IF(DL2GE) GO TO 33 
IF(DM20N) GO TO 32 
ASSIGN 180 TO KJ2 
JGT2=(M2HI+M0D2+L2L0)/2 
JGC00=IS2P1-JGT2 
GO TO 38 

52 ASSIGN 190 TO KJ2 
JGCDD={ISÎG2-M2HI-M0D2)/2+l 
GO TO 38 

33 IF(DM2CN; GO TO 36 

ASSIGN 200 TO KJ2 
JGCOO=IS2P1-L2LO 
GO TO 38 

35 IF<DM20N) GO TO 37 
36 ASSIGN 160 TO KJ2 

JGCDD=(ISIG2-L2L0)/2+l 
GO TO 38 

37 ASSIGN 153 TO KJ2 
JGCDD=0 

38 CONTINUE 
C JGCDD=NUMBER OF FUNCTIONS GCD FOR GIVEN ISIG2 
C 

660 LL0W=MAX0(LlL0-ISIG2tL2L0-ISIGl,LL0WP)+l 

C 
C LL0W=MAX0(0,M1L0-M2HI,M2L0-M1HI,L1L0-SIGMA2,L2L0-SIGMA1) 
C <+l IF NEEDED TO MAKE (LMÎN+SIGMA1+SIGMA2) EVENI+1 

C 
LMAX=ISIG1+IS2 
DO 460 LP=LL0W,LMAX,2 
L=LP-1 

JY12L=L*L 

C 
C SUBSCRIPT FOR ARRAY SUMM = JY12L +M1 +0R- M2 
C (+L+1 IF REAL PART) 

C 
LMM2L0=L-M2L0 
LPM2HI=L+M2HI 
L1MIN=MAXC(L1L0,L2L0-L,L-ISIG2) 

L1HAX=MIN0(IS1,L+IS2> 
L1DIF=L1MIN-L1L0 

C 
IF(LIDIF.NE.O) GO TO 75 

73 JGAB=JGABP 
GO TO 150 

75 GO TO KJl,(73,80,100,110,120) 
80 JGAB=JGABP+LlOIF/2 

GO TO 150 
100 IF(LiMIN-2.LT,MlHI) GO TO 80 
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JGAB=JGABP+L1MIN-JGT1 
GO TO 150 

110 IF (L1MIN-2.LT.M1HI) GO TO 73 
JGAB=JGABP+(L1MIN-M1HI-M0D1)/2 
GO TO 150 

120 JGAe=JGABP+L10IF 
C AT THIS POINT JGAB IS 1 LESS THAN THE INDEX FOR THE FIRST 

C GAB FUNCTION TO BE USED 

C 
150 JA=JA+1 

S1J«1 = C, ODO 
LiMIN=LlMIN+l 
DO 450 L1P=L1MIN,L1MAX,2 
L1=L1P-1 
L2MIN=MAXO(L2LO,IABS(L-L1)) 
L2MAX=MIN0(IS2tL+LlP) 
L?DIF=L2N!IN-L2LO 

C 
IF(L2DIF.NE,0; GO TO 155 

153 JGCDT=JGCOP 
GO TO 235 

155 GO TO KJ2,f153,160,180,190,200) 
160 JGCDT=JGC0P+L2DIF/2 

GO TO 235 
180 IF(L2MIN-2.LT.M2HI) GO TO 160 

JGCDT=JGCDP+L2MIN-JGT2 
GO TO 235 

190 IF(L2MIN-2.LT.M2HI) GO TO 153 
JGC0T=JGCDP+(L2MIN-M2HI-M002)/2 
GO TO 235 

200 JGC0T=JGCDP+L2DIF 
C AT THIS POINT JGCPT IS 1 LESS THAN THE INDEX FOR THE 
C FIRST GCO FUNCTION TO BE USED 

C 
235 SUM2=0.0D0 

L2MIN=L2MIN+1 
GO TO KAMI,(240,253,430) 

C 

c  
C M1=0, SO I MAG.PART OF GAB=0 

C 
240 JGAB=JGAB+1 

IF(LMM2LO.LT.O) GO TO 430 
241 JGCD=JGCDT 

DO 250 L2P=L2MÎN,L2MAX,2 
L2=L2P-1 
GO TO KA0M2,(242,244,248) 

C 
C M2=0, SO IMAG, PART OF GCD=0 
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242 JGCD=JGCD+1 
SUM2=SUH2+0MEGA(JOMG(L,LI,0,L2»0)»*SUMM{JY12L+LP) 

1 *GC0(JGCD)*0.5D0 

GO TO 248 

C 
C M2.NE.0,M1.EQ.0 

244 NI2 = M2L0 
C TERM WITH M2=M2L0=MMCj-|MD| I 

ASSIGN 248 TO K0M2 
JGCD=JGCD+1 

246 IF(.NOT.DSGNCD1 GO TO 720 

C 
C GCD HAS ONLY REAL PART NONZERO 

TEMP2=SUMM(JY12L+M2+LP)*GCD(JGCOJ 
GO TO 730 

C 
C GCD HAS ONLY IMAG PART NONZERO 

720 TEMP2=SUMMCJYi2L+M2)*GCD(JGCO) 
C ISIGN2=(-1)**M2 

730 SUM2=SUM2+0MEGA(J0MG{L,L1,0,L2,M2I)*ISIGN2*TEMP2 

GO TO KCM2,(248,250) 
248 Ir(DM2EQ.0R.L2.LT.M2HI) GO TO 250 

JGCD=JGCD+1 
IF(M2HI.GT.L) GO TO 250 
M2=M2HI 

C TERM WITH M2=M2HI=1IMCl+lMOll 

ASSIGN 250 TO KCW2 
GO TO 246 

250 CONTINUE 
SUM1=SUM1+GAB(JGABJ*SUM2 

GO TO 430 
C 
c * * * » » * * * * * » * * * * 
c 
C Ml.NE.O 
C 

253 M1=M1L0 
C SUM FOR M1 = M1L0=II MAI 

ASSIGN 430 TO KMi 
JGA8=JGAB+I 

255 L'^M1 = L-M1 
LPM1=L+M1 
IF(M1.GT.LMM2L0) GO TQ 260 

ASSIGN 290 TO KL2 
GO TO 262 

260 ASSIGN 295 TO KL2 
ASSIGN 330 TO KM2 

262 SUM2=0.CDC 
SUM3=C.000 

280 JGCD=JGCDT 
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DO 4CC L2P=L2MIN,L2MAX,2 
L2=L2P-1 
GO TO KL2,(290,2951 

290 IF(M2HI.LE.LMMU GO TO 292 
ASSIGN 305 TO KNi2 
GO TO 295 

292 ASSIGN 310 TO KM2 
295 GO TO KAMM2,(296,300,390) 

C 
C M2=Ct SO IMAG PART OF GCD=0 

296 JGCD=JGCD+1 
IF(LMM1.LT,0) GO TO 390 

298 WTEMP=0MEGA(J0MG(L,L1,M1,L2,0))*GCD(JGCD)*ISIGN1 

JYIMAG=JY12L+M1 

IF(DSGNAB) GO TO 790 

C 
C GAB HAS ONLY IMAG PART NONZERO 

SUM3=SUM3+WTEMP*SUMM(JYÎMAG) 

GO TO 390 

C 
C GAB HAS ONLY REAL PART NONZERO 

790 SUM2=SUM2+WTEMP*SUMM(JYIMAG+LP) 
GO TO 390 

C 
C M2.NE.0 

300 M2=M2L0 
C TERM WITH M2=M2L0=||MC1-1MO 1 I 

JGC0=JGC0+1 

IF(M2.LT.-LMM1) GO TO 390 
ASSIGN 390 TO KMM2 

302 GO TO KM2t (305,310,330) 
305 IF(M2.GT.LMM1) GO TO 330 

C 
C SUM FOR +M2 

310 JYIMAG=JY12L+M1+M2 
JYREAL=JYIMAG+LP 

C ISIGN1=(-1)**M1 
C ISIGN2=(-i)**M2 

WTEMP=0MEGA(J0MG(L,L1,M1,L2,M2))*(ISIGN1*ISIGN2I 
DS1=.TRUE. 
DS2=.TRUE. 
DS3=.FALSE. 
ASSIGN 330 TO KBEEP 

795 TEMP2=O.ODO 
TEMP3=O.ODO 
IF(.NOT.DSGNAB) GO TO 8^0 
IF(OSGNCD) GO TO 835 

C 
C GAB HAS ONLY REAL PART NONZERO, 
C GCD HAS ONLY IMAG PART NONZERO 
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TEMP2=SUMM(JYIMAG)*GCO(JGCD) 
IF(.NOT.DSl) TEMP2=-TEMP2 
GO TO 315 

C 
C GAB AND GCn HAVE ONLY PEAL PARTS NONZERO 

835 TEMP2=SUMM(JYREAL1*GCD(JGCD) 
315 SUM2=SUM2+WTEMP*TEMP2 

GO TO 325 
840 IF(DSGNCD) GO TO 855 

C 
C GAB AND GCD HAVE ONLY I MAG PARTS NONZERO 

TEMP3=SUMM(JYPEAL)*GCD(JGCD) 
IF(.NOT,DS35 TEMP3=-TEMP3 

GO TO 320 
C 
C GAB HAS ONLY IMAG PART NONZERO, 
C GCD HAS ONLY REAL PART NONZERO 

855 TEMP3=SUMM(JYIMAG)#GC0(JGCD) 
IF(.NOT.DS2) TEMP3=-TEMP3 

320 SUM3=-SUM3+WTEMP*TEMP3 
325 GO TO KBEEP,(330,3801 

C 
C SUM FOR -M2 

330 M2MM1=M2-M1 
JYIMA6=JY12L+ÎABS(M2MM1) 
JYREAL=JYÎMAG+LP 
WTEMP=OMEGA(J0MG(L,L1,M1,L2,-M2>) 
IF(M2MMi) 340,335,365 

335 WTEMP=WTEMP*ISIGN2*SUMM(JYREAL) 

IFt.NOT.DSGNAB) GO TO 870 
IF(.NOT.DSGNCD) GO TO 380 

C 
C GAB AND GCD HAVE ONLY REAL PARTS NONZERO 

339 SUM2=SUM2+WTEMP*GCD(JGCD» 

GO TO 380 
870 IF(DSGNCD) GO TO 380 

C 
C GAP AND GCD HAVE ONLY IMAG PARTS NONZERO 

338 SUM3=SUM3+WTEMP*GCD(JGCD) 

GO TO 380 
340 WTEMP=WTEMP*ISIGN1 

DS1=.FALSE. 
DS2=.TRUE. 
GO TO 350 

345 WTEMP=WTEMP*ISIGN2 
DS1=.TRUE. 
DS2=. FALSE. 

350 DS3=.TRUE. 

ASSIGN 380 TO KBEEP 
GO TO 795 
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380 GO TO KMM2,(390,400) 
390 IF(DW2EQ.0P.L2.LT.M2HI) GO TO 400 

JGCD=JGC0+1 

IF(M2HI.GT.LPM1) GO TO 400 
M2=M2HI 

C TERM WITH M2=M2HI=tIMCl+lMDlI 
ASSIGN 400 TO KMM2 
GO TO 302 

400 CONTINUE 
C 
C SUM2 IS MULTIPLIED BY THE REAL PART OF GAB 
C SUM3 IS MULTIPLIED BY THE IMAG PART OF GAB 

IF<DSGNABf GO TO 420 
SUM1=SUM1+SUM3*GAB(JGAB» 
GO TO KMl,(430,450» 

^20 SUM1=SUM1+SUM2*GAB(JGAB) 
GO TO KMl,(430,450) 

430 IF(DM1EQ.0R.L1.LT.VlHi; GO TO 450 
JGAB=JGAB+1 
IF(M1HI.GT,LPM2HI) GO TO 450 
M1=M1HI 

C SUM FOR M1=M1HI=1 I MA|+|MBt ( 

ASSIGN 450 TO KMl 

GO TO 255 
C 

C 
450 CONTINUE 

A(JA)=SUM1+SUM1 
460 I=(M0D(L1MIN,2)«EQ«0) A(JA)=-A(JA) 

C STMNT 460 INTRODUCES FACTOR (-i)**Ll 

C 
^70 JGCDP=JGCDP+JGCOD 
4^50 JGABP=JGABP+JGABD 

NA=JA 
RETURN 
END 

PROGRAM 15: DEL 

C DEL CHECKS FOR G=0 
C NBRNCH=1 - REAL TERP ,=2 - NO TERM 

SUBROUTINE DEL0(MSUMB,MINA,MIN3,MAMMe,DSGN,0BMIN, 

1 NPRNCH) 
IMPLICIT LOGICAL*](D) 
DMDIFO=. FALSE. 
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D1=.FALSE. 
IF(MSUMB.LE.O) D1=.TRUE, 
D2=.FALSE* 
D3=. FALSE. 
IF(MAHMB) 20,25,30 

20 IF(MINB,GE.O) D2=.TRUE. 
IF(MINA.GE.O) D3=. TRUE-

GO TO 35 
25 DMDIFO=.TPUE. 

IF(MINû,GE.O) GO TO 27 

TF(MINB.GE.O) D2=.TRUE, 
GO TO 35 

27 D2=.TRUE, 
IF(MINR.GE.O) 03=.TRUE, 
GO TO 35 

30 IF(MINA.GE.O) 02=.TRUE. 
IF(MINB.GE.C) D3=.TRUE. 

35 IF(Di) GO TO 60 
IF(,N0T.D2) GO TO 50 
IF(OMDIFO .AND..NGT.OSGN) GO TO 60 
GO TO 50 

40 IF(D2.AN0.DBMIN) GO TO 60 

50 NBRNCH=1 
RETURN 

60 NBRNCH=2 

RETURN 
C NBRNCH=1 - BOTH TERMS,- NEITHER TERMS 
C NBRNCH=2 - REAL TERM ,=3 - IMAG TERM 

ENTRY DELM(M,MSUMB,MINA,MrNB,MAMM8,MM ,MA,MB,OSGN, 

1 D3E00,DBMÎN,NBRNCH) 
Dl=.FALSE. 
IF(MSUMB. LE.M) D1=.TRUE. 

D2=. FALSE. 
D3=.FALSE. 
IF(MAMMB) 100,150,250 

100 ASSIGN 285 TO K5 
ASSIGN 290 TO K4 
IF(MINB.Gc.M) D2=.TRUE. 
IF(MINA.GE.M) D3=.TRUE. 
GO TO 260 

150 IF(MINA.GE.M» GO TO 180 
IF(MINB,GE.M) GO TO 165 
IF(Dl) GO TO 155 
N3RNCH=4 
RETURN 

155 IF(DBEQO.OR.M, EO, MM) GO TO 160 
NBRNCH=1 
RETURN 

160 IF(DSGN) GO TO 162 
NBRNCH=3 
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RETURN 
162 NBRNCH=2 

RETURN 
D2=.TRUE. 

165 IF(,NOT.01) GO TO 170 
IF(,NOT,D8MIN) GO TO 170 
NBRNCH=4 

RETURN 
l^C IF(M.EQ.IA8S{4B)IG0 TO 172 

N8RNCH=i 

RETURN 
172 IFfMR.GE.O) GO TO 175 

NBRNCH=3 
RETURN 

175 NBRNCH=2 

RETURN 
D2=.TRUE. 

180 IF{,NOT.01) GO TO 200 
IF(.NOT.OBMIN) GO TO 185 
NRRNCH=6 

RETURN 
185 IF(MINB.GE.M) GO TO 190 
186 IFCM.EQ,lABSfMA)) GO TO 187 

NBRNCH=1 

RETURN 
197 IFtMA.GE.G) GO TO 188 

NBRNCH=3 
RETURN 

188 NBRNCH=2 

RETURN 

03=.TRUE. 
190 NBRNCH=1 

RETURN 
200 IF(MIN6.LT,M) GO TO 186 

03=.TRUE, 
NBRNCH=1 

RETURN 
250 ASSIGN 290 TO K5 

ASSIGN 285 TO K4 
IF(MINA.GE.M) 02 = .TRUE. 
IF(MINR.GE.M) 03=.TRUE. 

260 ÎF(DI) GO TO 300 
IF(D2) GO TO 270 
NBRNCH=4 
RETURN 

270 IF(.NOT.02) GO TO 280 
IF{0BEQC) GO TO 160 
N3RNCH=1 
RETURN 

280 IF(OBEQO.OR.M.EO.IABS(MAMM8)) GO TO 160 
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GO TO K4,(285,290) 
285 IFCM.EQ,lABS(MA)J GO TO 187 

NBRNCH=1 
RETURN 

290 IF(M.EO.lABS(MB)) GO TO 172 
N8RNCH=1 
RETURN 

300 IF(.N0T.D2) GO TO 32C 
IF(.NOT.DBMIN) GO TO 310 
NBRNCH=4 
RETURN 

310 IF(OBcQO) GO TO 160 
IF(.N0T«D3) GO TO K4,(285,290» 
NBRNCH=i 
RETURN 

320 IF(DBEOO) GO TO 16C 
IF(D3) GO TO K5,(290,285) 
IF(M, EO.XM) GO TO 160 
NBRNCH=1 
RETURN 
END 

PROGRAM 16: JOMG 

C JGMG=SUBSCRIPT FOR ARRAY OMEGA 
FUNCTION J0MG(L,L1,M1,L2,M?I 

INTEGER*2 JOMEGA 

DIMENSION J0MEGA(3,5,9) 
DATA JOMEGA/ I, 0, 0, 2, 0, 0, 0, 4, 0, 0, 

1 7, 0 , 0 , 0, 11, 0, 0, 0, 16, 0, 0, 18, 0, 

2 0, 0, 23, 0, c. 31, 0, 0, 0, 0, 42, 0, 0, 

3 47, 

o
 

»• o
 

HI 

60, 68, 0, 0, 83, 96, 0, 0, 0, 0, 

4 0, 0,116, 0, 0, 124, 128, 0, 143, 154, 0, 0, 0, 

5 0, 0 , 0, 0, 0, 176, 0,189, 200, 0, 222, 227,247, 

6 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 278, 0,296, 

7 310, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,339, 

8 0, 0,364, 

00 m
 0, 0, 0, 0, 0, 0, 0, 0, 0, 

9 0, 0, 0, 0, 425, 0, 0, 0, 0, 0, 0, 0, 0, 

1 0, 0, 0, 0, 0, 0, 0,457/ 
IF(L1.GE.L2) GO TO 20 
LG=L2 
MG=ISIGN(M2,M1) 
LL=L1 
ML=ISIGN(M1,M2) 
GO TO 30 

20 LG=L1 
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MG=M1 
LL=L2 
ML=M2 

30 J=J0MEGA(LL/2+l,LG+l,L+l) 
IF(MG-l) 33,36,40 

33 J=J+IABS(ML) 

GO TO 100 
36 J=J+MINC(L,LLJ+MINC(LL,L+1)+ML+1 

GO TO ICO 
4C IF(LL<GT.L-MG+1) GO TO 50 

J=J+MG*(2*LL+1)+ML 
GO TO 100 

50 TF(LL.LT.L+MG) GO TO 60 
J=J+2*MG*(L+1)+ML 
GO TO 100 

60 J=J+MG*(L+LL+1)-(MG*(MG-1)+(L-LL1*(L-LL+1))/2+ML 

100 JOMG=J 
RETURN 
END 
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PART TWO. COMMENTS ON LOCALIZED ORBITALS 

IN DIATOMIC MOLECULES 
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I. INTRODUCTION 

In his original paper on the Hartree-Fock equations, 

Fock (1930) pointed out that the same N-electron single deter­

minant wave function can be expressed in terms of infinitely 

many sets of space orbitals. If two sets of orbitals {u^} 

and {v^} are related by a unitary transformation 

in which T is an orthogonal matrix, that is 

I Wij = I = ^jk 

then the N-electron wave function is 

W = jd:[liru%(2k-l)a(2k-l)u%(2k)B(2k)] 

= j4[]^[v%(2k-l)a(2k-l)v%(2k)e(2k)] 

Since measurable properties depend only on the total wave 

function no one of these sets of orbitals can be said to 

be more "correct" than any other. Thus, even after the total 

wave function has been determined by energy minimization, 

there still remains some freedom in choosing the orbitals. 

Many investigators have made use of this freedom. Hund 
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(1931, 1932) used it in connection with HgO, and Coulson 

(1937, 1942) in connection with CH^. Sets of "equivalent" 

orbitals, for symmetric molecules, were constructed by 

Lennard-Jones and Hall (Lennard-Jones, 1949a, 1949b; Hall and 

Lennard-Jones, 1950): certain symmetry operations transform 

one of the equivalent orbitals into another. Lennard-Jones 

and Pople (1950) observed that the equivalent orbitals are 

"localized" in the sense that they minimize the electronic 

interactions between different orbitals. This property can 

be used to define localized orbitals for systems to which the 

concept of equivalent orbitals is inapplicable: atoms, and 

molecules having no symmetry. Edmiston and Ruedenberg (1963, 

1965, 1966) have devised a method for determining such local­

ized orbitals, and have calculated them for a large number of 

systems. (Other kinds of localized orbitals have been de­

fined, for example by Boys (1960) and by Ruedenberg (1962), 

but we shall not be concerned with them here.) 

The definition of these localized orbitals will now be 

stated precisely. The electronic interaction energy of a 

system with wave function Y can be written 

EI = (f| y = c - X 
i<j 

in which C is the Coulomb term 
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and X is the exchange term 

^ ' 1 1  
n m 

The notation 

has been used. Since EI depends only on the wave function 

it is invariant with respect to unitary transformations among 

the orbitals. But it is also true that C and X are invariant 

with respect to such transformations. (See, e.g. (Edmiston 

and Ruedenberg, 1963).) Now the Coulomb and exchange terms 

can each be split into a term which includes the orbital self-

repulsions and a term which includes only interorbital inter­

actions : 

C = 2(C' + D) and X = X' + D , 

with 

° = I 
n 

These quantities, C , X' and D, are not invariant with re­
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spect to orbital transformations. Thus the localized orbitals 

can be defined as that orthonormal basis in the space spanned 

by {u^} for which D, the sum of orbital self-repulsions, is 

maximum. It is clear from the invariance of C and X that max­

imization of D implies minimization of C and X' . Thus the 

localized orbitals are indeed "localized", in the sense that 

they interact with each other to the least possible degree. 

The method for determining the localized orbitals for a 

system, given some set of orbitals for that system, is based 

on the maximization of D. This method is described in detail 

by Edmiston and Ruedenberg (1963, 1965). 

The localized orbitals have several useful characteris­

tics. Localized molecular orbitals (LMO's) often turn out to 

be inner shells, lone pairs and bonding orbitals, which corre­

spond quite well with traditional chemical concepts. Further­

more, the LMO's are often transferable with very little change 

between similar molecules. This property makes them partic­

ularly suitable for studying the similarities and differences 

between molecules. On the other hand, the canonical Hartree-

Fock orbitals are particularly suited for the comparison of 

different electronic states of the same molecule. A thorough 

discussion of these points is given by England, Salmon and 

Ruedenberg (1971). 

Edmiston and Ruedenberg (1965) have determined LMO's for 

a number of diatomic molecules containing atoms of the first 

row of the periodic table. They used as a starting point the 
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minimal basis set wave functions of Ransil (1960a, 1960b) and 

of Padgett (1958) . Contour plots of these LMO's are presented 

here. These provide no information beyond that given by 

Edmiston and Ruedenberg (1965), but they present that infor­

mation in a way which makes it easier to see certain interest­

ing properties of the LMO's. In particular, they facilitate 

comparisons of different orbitals. We shall first discuss 

the orbitals molecule-by-molecule, and then compare similar 

orbitals in different molecules. 
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II. CONTOUR DIAGRAMS OF LMO'S 

A. General Considerations 

We present here contour diagrams of LMO's for certain 

diatomic molecules containing atoms of the first row of the 

periodic table. It should be emphasized that the function 

plotted is the orbital itself, not the electron density. The 

contours are lines of constant density, but the increments in 

density between them are not constant. The increment in the 

value of the orbital is constant for each contour plot. How­

ever, the same increment was not used for each plot, and this 

fact should be kept in mind when comparing them. The orbital 

increment will be given for each diagram. 

The orbitals plotted are all minimum-basis-set functions. 

The most accurate of the functions found by Edmiston and 

Ruedenberg were used in all cases. In some cases wave func­

tions in which the orbital exponents had been varied to mini­

mize the energy of the molecule (best-molecule atomic orbi­

tals or BMO's) were available; in others, Slater-orbitals 

(with orbital exponents determined by Slater's rules; abbre­

viated by SAO's) were used. We shall indicate in each case 

which kind of function is given. 

In all cases the diagrams are drawn in a plane contain­

ing the internuclear axis. The positions of the nuclei are 

indicated by heavy dots. The scale is shown on the figures, 

and is the same throughout. Contours for which the orbital 
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has a positive value are shown as solid lines, those for 

which it has a negative value are shown as broken lines, and 

the nodes are shown as dotted lines. The sign of the wave 

function is shown whenever this is feasible. 

The diagrams were produced in two steps. First, the 

value of the wave function was computed for each point on a 

rectangular grid. The resulting array of numbers was then 

used by a standard contour-plotting program to find lines of 

constant function value. The plots were made by an IBM 7074 

computer and a CALCOMP plotter. 

B. Orbitals in Various Molecules 

1. Molecules having sigma bonds 

Figures 4 and 5 exhibit contour diagrams of all localized 

molecular orbitals (BMO) in the molecules L±2 and LiH, respec­

tively. In Li2 there are two inner shell orbitals and a bond­

ing orbital. For LiH there are an inner shell orbital on 

lithium and a LiH bonding orbital. All of these orbitals are 

of sigma type, that is, they are symmetric with respect to 

rotation around the internuclear axis. 

For the bonding orbital of Li2 , the outermost contour 

line corresponds to an orbital value of 0.005, the next con­

tour line to 0.015, the next to 0.025 as indicated. Thus the 

increment is 0.01 Bohr in this case. By contrast, the 

outermost contour in the bonding orbital of LiH corresponds 

to an orbital value of 0.025 Bohr , and the increment of 
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0.025 

0 1 5 

Figure 4. Localized MO's in Li2 
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I 1 1 1 I 
0 1 5 

Figure 5. Localized MO's in LiH 
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the wave function value from one contour line to another is 

also 0.025 Bohr in this case. Comparison of Li2 and LiH 

shows that the Li^ valence orbital is considerably larger 

than the LiH valence orbital and that its maximum is much 

lower. In short, it is a much less compact orbital. The 

bonding orbitals of Li^ and LiH have a rather strong negative 

peak near the Li nucleus which establishes orthogonality to 

the inner shells. 

For the inner shells the outermost contour is again 

0.025 Bohr . Because their value changes so rapidly, the 

increment for them is 0.2 Bohr . Three of these inner 

shell contours are drawn. If the remaining inner shell con­

tours were drawn, the inner part would be solid black. For 

this reason, the inner shell contours are not drawn beyond the 

third one and, instead, the value of the inner shell orbital 

at the position of the nucleus has been written into the dia­

gram. From the figure, it is obvious that the inner shell of 

lithium is very similar in Li^ and LiH and in a very practical 

sense transferable. However, note that the localized inner 

shell orbital of the lithium atom has a slight negative tail 

towards the other atom which yields a very small amount of 

antibinding. 

2. Molecules having sigma bonds and sigma lone pairs 

Figure 6 shows all localized orbitals for the ground 

state of the BH molecule (BMO) and the excited state of 
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(SAO). These are again rotationally symmetric orbitals, 

i.e., sigma type orbitals, and the complete contour surfaces 

can be obtained by spinning around the indicated axis. In all 

orbitals shown the outermost contour corresponds to a wave 

function value of 0.025 Bohr . For all valence shell or­

bitals the increment from one contour to another is 0.025 

— 3 / 2  Bohr ' . For the inner shells the increment is again 

0.2 Bohr , but only three contours and the wave function 

values at the nuclear positions are shown. 

The plots show clearly that the lone pair orbitals have 

almost all their density on that side of the atom which 

points away from the bond, whereas the bonding orbitals have 

almost all their density in between the two atoms. There is 

of course some local overlap between the orbitals; in par­

ticular, the bonding orbital has some negative contributions 

in the lone pair region and the lone pair orbital has some 

negative contribution in the bonding region, so that the 

resulting orbitals will be orthogonal to each other. It is 

evident that the positive contours of the lone pair orbital 

have very similar distributions in B^ and BH, as one would 

like to see them have. It is gratifying that the negative 

sides are only somewhat different even though rather differ­

ent atoms are involved. 

For the inner shell orbitals, too, one finds near-perfect 

transferability as was the case for lithium. 
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3. Molecules having sigma bonds and triple lone pairs 

Figure 7 exhibits the localized orbital structure of the 

F2 and HF molecules (BMO). The wave function for the F2 

molecule is made up from one localized orbital representing 

a single sigma bond and six lone pair orbitals, three on each 

atom, which accommodate the twelve lone pair electrons. All 

orbitals are much more contracted than those of boron, because 

of the higher nuclear charge of fluorine (note that the scale 

of all figures is the same). The outermost contour corre-

-3/2 spends again to 0.025 Bohr , but the increment between 

-3/2 
adjacent contours in the valence shell is now 0.05 Bohr 

The contour surfaces of the bonding orbital can be obtained 

by spinning the contours around the nuclear axis. 

For the lone pair orbitals the situation is somewhat 

more complicated. There are three trigonally equivalent lone 

pair orbitals at each end of the molecule which are arranged 

at 120° to each other; only one of these is shown on each 

atom. It can be observed that the lone pair orbital looks 

very much like an (s-p) hybrid on that particular atom, ex­

cept for the slight build-up of charge near the other atom. 

By connecting the position of the nucleus with the maximum of 

the lone pair orbital one can define an approximate axis of 

the lone pair orbital. The three-dimensional contours of 

this lone pair are approximated by spinning the orbital around 

this axis, except in the region near the other atom. It is of 

interest that this axis of the lone pair orbital is not very 
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Figure 7. Localized MO's in and 
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far from being perpendicular to the internuclear axis. It is 

much less inclined toward the back of the molecule than it 

would be in the case of tetrahedral hybridization. This 

shows that the electrostatic repulsion between the three lone 

pair orbitals is stronger in its effect than the repulsion 

between any one lone pair and the bonding orbital. 

The relation between and HF is similar to that ob­

served between and BH. The HF molecule has a sigma bond­

ing orbital and has three trigonally equivalent lone pairs, 

which are almost identical in character and shape to the 

corresponding lone pairs of • These contracted lone pairs 

are less sensitive to the other atom than those on B. We 

also find nearly complete transferability between the inner 

shells. Here again the outermost contour is 0.025 Bohr 

and the increment of those contours which are shown is 

0.2 Bohr"^/^ . 

The main difference between the two molecules lies in 

the bonding orbital, although the part of the bonding orbital 

near the fluorine nucleus is rather similar in the two sys­

tems , In both molecules the bonding orbital exhibits a maxi­

mum close to the fluorine atom, which arises from the in­

creased (2pa) admixture to the bonding orbital. Thus, pro­

ceeding from F along the internuclear axis, the orbital rises 

from the value zero, at the atom, to the maximum, and then 

begins to drop in the bond region. This is different from 

what was seen in B2 and BH. 
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4. Molecules having a triple bond and sigma lone pairs 

The left side of Figure 8 shows the localized orbital 

structure of the N2 molecule (BMO) . There are one lone pair 

on each nitrogen atom and three trigonally equivalent "banana" 

bonds between the two atoms. The outermost contour in each 

orbital shown in this figure represents an orbital value of 

0.025 Bohr . The increment is 0.05 Bohr for the 

valence orbitals and 0.2 Bohr for the inner shell orbi-

tals. There are three bonding orbitals arranged in a trig­

onally symmetric fashion around the internuclear axis; only 

one of them is shown in the figure. For this one, the con­

tour lines in the plane containing the orbital maximum and 

the internuclear axis are exhibited. The three-dimensional 

contours can be expected to form a three-dimensional cloud 

essentially above the internuclear axis. The cross section 

in a plane perpendicular to the axis should be roughly that 

of a (p)-type distribution. A distinct maximum is observed 

near each nucleus, but it is less pronounced than those seen 

in the sigma bonding orbitals of F2 and HF. 

The right side of the figure shows the localized struc­

ture of the CO molecule (SAO). The quantitative meanings of 

the contours are the same as in N2 . CO is isoelectronic 

with / and the localized orbital structure brings this out 

very clearly. One can imagine the CO structure as obtained 

from the structure by transferring one proton charge from 

the left nucleus to the right nucleus. This results in the 
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contraction of the lone pair near the 0 nucleus and the expan­

sion of the lone pair near the C nucleus, as compared to the 

nitrogen lone pairs. Due to the orthogonality requirement, 

the negative contours of the carbon lone pair are less spread 

toward oxygen than are the negative contours of the oxygen 

lone pair toward carbon. The negative contours of the #2 

lone pairs are intermediate in spread. Moreover, each of the 

three bonding orbitals is polarized towards the oxygen atom. 

Finally, the inner shell of oxygen is smaller than that of 

nitrogen, whereas that of carbon is larger. 

The third molecule in this isoelectronic series, BF, is 

shown on the left side of Figure 9. The localized orbitals 

(SAO) are completely analogous to and CO, except that the 

charge difference between B and F is even greater than that 

between C and 0. Hence the lone pair of fluorine is even 

more contracted near the F nucleus and more diffuse toward 

the B nucleus, whereas the lone pair of boron is more expanded 

near the B nucleus and less spread toward the F nucleus. The 

inner shell of fluorine is also contracted; the inner shell 

of boron is expanded. The three trigonal bonding orbitals 

are even more polarized towards the heavy atom than they were 

in CO and concomitantly acquire more fluorine character. In 

fact, near the fluorine atom the trigonal bonding orbitals 

look similar to the trigonal lone pairs of fluorine found in 

F2 and HF, except that the axis is, of course, tilted towards 

the bond. Since the boron lone pair orbital is considerably 
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Figure 9. Localized MO's in BF and LiF 
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more extended, the increment between adjacent contours is 

chosen to be 0.025 Bohr ; that is, a step by two contours 

in the B lone pair corresponds to a step by one contour in 

the F lone pair or in the bonding orbital in this figure. 

The right side of Figure 9 shows the LiF molecule (SAO). 

Although it is not isoelectronic with BF, its localized 

structure is not so different, because it can be thought of 

as being obtained from the BF molecule by removing two posi­

tive nuclear charges and the two lone pair electrons from the 

boron atom. There remain then the fluorine lone pair and 

inner shell orbitals, all of which are similar to those found 

in BF, and the trigonal bonding orbitals which, although they 

are even more polarized towards the fluorine atom, still show 

some similarity to those found in BF. The inner shell in 

lithium is, of course, considerably larger, and similar to 

that found in L±2 and in LiH. 

5. A molecule having a triple bond and no lone pair 

The ground state of the NH molecule has the electron 

3 2 2 2 
configuration Z (la) (2a) (3a) (irx) (Try) . When the irx. Try 

orbitals are excluded from the localization procedure, the 

localized structure consists of an inner shell on nitrogen, 

a lone pair on nitrogen and a sigma bonding orbital. A vis­

ualization of this can be obtained from the oxygen atom in 

2 2 2 — the electron configuration (Is) (2s) (2pa) ̂(2pn)(2pn). 

First, we hybridize the (2s) and (2pa) orbitals to obtain 
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0 1 

Figure 10. Localized MO's in the (la) ̂ (2a) ̂ (lir) ̂ 

excited state of NH 

digonal hybrids. Then, we imagine removing a proton from in­

side the 0 nucleus to obtain N and H nuclei. The digonal hy­

brids on 0 then become a lone pair on N and a a bonding 

orbital. 

In Figure 10, there is shown the localized orbital (SAO) 

1 2 2 4 structure of the S (la) (2a) (lir) excited state, which 

can be thought to result from promoting two electrons from 

the a lone pair into the nonbonding orbitals (irx) and (iry) , 

which are essentially atomic (p) orbitals. When this struc­

ture is localized, the sigma bonding orbital combines with 
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the TT orbitals to form three trigonally arranged banana bonds 

between the nitrogen and the hydrogen, only one of which is 

shown in the figure. The quantitative meanings of the con­

tours are the same as for N2 and LiF. Unlike other cases 

involving a common atom in different molecules (e.g. B2 / BH, 

BF), the inner shell in NH is more nearly spherically symmet­

ric about N than are the inner shells on Ng ; i.e., the atomic 

(Is) orbitals in are mixed with the valence atomic orbitals 

to a slightly greater extent than the nitrogen (Is) orbital in 

NH. Perhaps this is due to the fact that there is no longer a 

sigma lone pair. The resulting structure of bonding orbitals 

is analogous to that found in LiF. This example shows how 

localization can lead to different localized orbitals in dif­

ferent states of a molecule. 

C. Similar Orbitals in Different Molecules 

1. Comparison of sigma lone pair orbitals in different 

molecules 

In Figure 11 we have collected all sigma lone pairs for 

the molecules discussed in the previous section. They are 

arranged according to increasing nuclear charge. The overall 

impression is that of a great similarity in the geometrical 

shapes of the lone pair orbitals. In all cases the density 

is concentrated on the side of the atom away from the bond, 

and in all cases the shape is that of an (s-p) hybrid with 

considerable (s) character. Except for F, the latter is 
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Figure 11. Sigma lone pair MO's for diatomic molecules 
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always larger than 50%. The larger the fraction of the 

valence orbitals which are lone pairs, the larger the (2s) 

character of the lone pair orbitals (Edmiston and Ruedenberg, 

1963, 1965) . In all cases, there is a smaller negative con­

tribution towards the second atom. Even though different 

atoms are involved, the general shape of this usually weak 

antibonding contribution is fairly uniform. The general lone 

pair shape is preserved throughout the whole series, even 

though the overall size of the lone pair orbital decreases 

progressively as one proceeds from lighter to heavier nuclei. 

All lone pair orbitals have a node between the two atoms 

and, hence, have a slightly antibonding character. This 

destabilizing effect of the lone pair localized molecular 

orbitals corresponds to the nonbonded repulsions between lone 

pair atomic orbitals in the valence bond theory. In the MO 

theory all bonding and antibonding resonance effects can be 

described as sums of contributions from orthogonal molecular 

orbitals. Hence, the "nonbonded repulsions" appear here as 

"intra-orbital" antibonding effects in contrast to the valence 

bond description. 

Very close transferability can be observed between the 

three boron and the two fluorine lone pair orbitals. From 

these results, it appears virtually certain that if one has a 

localized orbital in a larger molecule, and if one changes 

some of the atoms which the orbital itself does not reach, 

then almost absolute transferability can be expected. 
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2. Comparison of sigma bonding orbitals in different 

molecules 

All sigma bonding orbitals in the molecules considered 

are collected in Figure 12. To save space, the two outer 

contours of the Li^ molecule have been removed (c.f. Figure 

4). The bonding orbitals show the overall contraction going 

from light atoms to heavy atoms. Also observe that in 

and F2 / the bonding orbital has negative parts in the lone 

pair regions, because it has to be orthogonal to the lone 

pairs; this is not the case in Li^ . 

As regards the hydrides, it is of interest to compare 

the bonding orbitals of BH and HF with the corresponding lone 

pairs on B and F shown in Figure 11. The similarity in the 

overall size of the bonding and the lone pair orbitals is 

quite remarkable. This indicates that there must be a large 

degree of overlap between the H orbital and the (sp) hybrid 

of the heavy atom contributing to the bonding orbital. How­

ever, it is apparent that this hybrid has more (p) character 

than the lone pair. In going from LiH to BH to HF the bond­

ing orbital acquires an increasingly greater (pa) character 

because of an increasing amount of nonbonded repulsion from 

lone pair electrons. This is manifest in the bonding orbital 

as an elongation and an increased number of negative contours 

outside the bond region from LiH to BH to HF. 
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3. Comparison of trigonal orbitals in different molecules 

Figure 13 contains all trigonal orbitals in the molecules 

considered. The bonding orbitals in the left column exhibit 

the increasing polarization from to LiF. Moreover, the 

inclination of the contributing (s-p) hybrid of the right atom 

into the bond region diminishes as the polarization increases, 

i.e., the axis of this hybrid is much closer to being perpen­

dicular to the internuclear axis in LiF than in . Clearly, 

an increase in (p) character accompanies the diminished 

inclination. 

The lone pairs in F2 are even more nearly perpendicular 

to the internuclear axis. They are very similar, but the one 

in HF is slightly more inclined away from the bond; i.e., it 

has a slightly lower (p) character. This is so, presumably, 

because the HF bonding orbital puts more charge in the imme­

diate neighborhood of the F atom. 



www.manaraa.com

Figure 13. Trigonal bonding and lone pair MO*s for diatomic 

molecules 
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