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PART ONE. MOLECULAR MULTICENTER INTEGRALS

BASED ON THE BIPOLAR EXPANSION



1. INTRODUCTION

The difficulty of calculating molecular multicenter inte-
grals remains one of the major blocks to progress in guantum
chemistry. The energy integrals for electronic interactions
between orbitals on three or four different centers are espe-
cially troublesome. Two main types of orbitals have been used,
Gaussian orbitals and Slater-type orbitals. The integrals
over Gausslan orbitals are much easier to evaluate than those
over Slater-type orbitals, but a much larger Gaussian basis
set must be used to obtain the accuracy given by a smaller
Slater-type basis sct. Formulas have been found for inte-
grals over several Xxinds of Gaussian orbitals: Gaussians mul-
tivlied by powers of the Cartesian coordinates (Boys, 1950;
Wright, 1963); ellipsoidal Gaussians (Browne and Poshusta,
1962); and Gaussian radial functions multiplied by spherical
harmonics (Harris, 1963; Xrauss, 1964). A number of methods
have been used to evaluate multicenter integrals over Slater-
type orbitals: expansion of an orbital on one center in terms
of another (Barnett and Coulson, 1951; Barnett, 1963; Harris
and Michels, 1965, 1966; Ellis and Ros, 1966); various kinds
of integral transforms (Shavitt, 1963; Shavitt and Karplus,
1965; Bonham, Peacher and Cox, 1964; Silverstone, 1968a, 1968b;
Silverstone and Xay, 1558; Kay and Silverstone, 196%9Db);
sophisticated numerical technigues {(Wahl and Land, 1969;

McLean, 1971); Tayvlor series methods (Kay and Silverstone,



196%a); and asymptotic expansions (Kay and Silverstone,

1970) .
Many of these methods for evaluating molecular integrals
are based on some kind of expansion for rlz_l , the inverse

interelectronic distance. For multicenter integrals, the bi-
polar expansion (Carlson and Rushbrooke, 1950; Buehler and
Hirschfelder, 1951, 1952; Sack, 1964, 1967; Ellis and Palke,
1966; Kay, Todd and Silverstone, 1969) seems to be a suitable
one, but few applications of it (Ellis and Ros, 1966; Kay and
Silverstone, 1970) have been mace.

The present work is concerned with further development
of the bipolar expansion and its use to obtain new expres-
sions for both kinds of integrals, those over Gaussian orbi-
tals and those over Slater-type orbitals.

The analysis 1s based on a recent form of the bipolar
expansion (Ruedenberg, 1967) derived by means of Fourier
transforms. A new type of bipolar expansion is derived, in
which the radial factor is expressed as a double infinite
series with the same functional form for all values of its
arguments. This series is shown to converge.

The new expansion for rlzml is used to obtain a formula,
involving only finite sums, for integrals over products of
Gaussian radial functions and spherical harmonics. Unlike
previous expressions for such integrals (Harris, 1963;
Krauss, 1964), our formula does not involve any rotation rep-

resentation matrices, which are very time-consuming to calcu-



late. The integral expression has been put into a form suit-
able for efficient calculation of the large number of inte-
grals needed in a molecular problem. This form has been used
as the basis for computer programs by Hubert Kinser and the
present author. Those written by the author are presented and
discussed.

A "guadrupolar" expansion, involving four atomic centers,

is derived from the new bipolar expansion. This expansion for

12
over Slater-type orbitals on four different centers in terms

r is used to derive an asymptotic expansion for integrals
of two-center charge distribution transforms. These have the
nature of overlap integrals, and are finite sums over closed
expressions. It is expected that this expression for the
integral would be sufficiently accurate for cases in which
either the orbital exponents or the internuclear distances are
fairly large. In such cases only a few terms would be needed,
so it 1s expected that an efficient calculational method could

be based on the asymptotic expansion.
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II. BIPOLAR EXPANSION AND GENERAL INTEGRAL

A. Formal Derivation

We wish to evaluate the integral

-
n
G

o
o

—

= fdvl fdvz u* ('r’Al)uq (}*Bl)rlz’luq*(;’écz)uq (?D?_) (1)
a b c d

in which uq(f) is an atomic orbital whose functional form has
not yet been specified. The subscript g denotes the set of
three quantum numbers {n,%,m}, and the quantity T, is the
interelectronic distance.

The first step is to express rlz_l by means of the bipo-
lar expansion. For this purpose it is convenient to define

the vectors,

-> -> .« . .
Xps Xy = positions of two arbitrary centers (2a)
-> -> « . -

Xy, X, = positions of two electrons (2b)
> 2> > i . —ﬁ_-»-> (3)
;= X;7%,, r, = X=Xy = Xo™Xp

and introduce the corresponding polar coordinates

' o 1 ;
kI']-IVJ-'¢JhJ’ 21@2}' {Rlelé} L4 (4)

It is assumed here that the Cartesian coordinates on P and Q

dififer only by the translation ﬁ, not by a rotation. More-



over, {R,0,9} are the nolar coordinates of center Q in the
coordinate system on center P.

A bipclar expansion is defined as a series which ex-
presses a function f(rlz) in terms of products of functions
of 81, ¢l, 82, ¢2, 0 and ¢. This work is based on the bipo-
lar expansion of rlz—l derived by Ruedenberg (1967), which

can be written in the form

i +9, i +22
21=0 ml=— 1 22=0 m2=-Q
a1
X(—l) Y (e-: I.G )Y (6 1¢ )
,lel ES 1 S&zmz 2 2
2,8 m,m
) 1727172
Y ¥ (0,00 Ty 4 (BT R (5)
172
L
with the definitions
2 f°° . . :
Jo g1 (X1sT5R) = (75] 0dk 3o (kry)j, (kr,)j (kR) (6)
172 1 2
1£2m1 5 (£l+22+L)/2

2, 24 L £

ml m2 M 0 0 O



M = —(ml+m2) (8)

and the summation rules

max{|8;-2,{, [M|} <L < 2.+ 2, (9a)
L +0,+L = even. (9b)
The
31 35 33
my m, M,

are Wigner 3-j symbols, the er are normalized spherical har-
monics, and the jQ are spherical Bessel functions, which are

related to the Bessel functions of the first kind by

Jp00 = (wan P a e (10)

The integration over k is a result of the Fourier transform
used in Ruedenberg's derivation (1967).

Substitution of this bipolar expansion (5) into the
integral (1), followed by interchange of the summations with

the volume integrations, leads to

o +Q,l © +,Q,2
o 1
.33 33 -
4 ,Q,lzzmlm2 (11)
2.=0 ml=—£l 22=0 m2=—£2



in which
I =fav fav £ (1AB) £ (2¢D)
Lyhomym, 1Jd72 "aymq, q amyd g
2 252 m.m
N1 z 1F2™ ™)
K( l) - YLM(GIQ)(A)L
i
><~75L122L(rl,r2,R) . (12)
and
£ (nPQ) = ¥, (68_,0 )u *(¥_ Ju_, (T ) (13)
g’ gm'"n’""n’ "g Pn’ "g' '"0On )

There are three different integrations in (12): two
volume integrations and the integration contained in JQZ'L’
the r-dependent factor of the bipolar expansion. We would
like to be able to separate these integrations from each
other, so that they can be performed independently. This can
be done if the integrand in JQQ’L can be expressed as a sum
of functions, each of which is a product of a function of Tyv
a function of Ty and a function of both R and the integra-
tion variable k. To accomplish this we use the following
expansion of spherical Bessel functions in terms of Laguerre

polynomials (Abramowitz and Stegun, 1965, Item 22.9.16):

2n+8
) Loy (9) (14)

fit~18

jz(xy) = exp(—x2/4)
n



with
¢Sn2(y) = yiLn2+1/2(y2)/2n[2(n+2)+1]!! , (15)

where

(2p+1) !t 1.3-5-.-(2p+1)

(2p+1) 1 /2Pp1

= 2P* r(p3s2)/vE (16)

and the functions
L %(x) = eXx" 2 (a/dax) P (e TEPT8y /nt (17)

are the generalized Laguerre polynomials (Abramowitz and

Stegun, 1965, Item 22.11.6). We write this expansion in the

form

p(krp) = jgp(xy), with x = kap, y = rp/ap , (18)

j2
where a_ is a scale factor, to be determined later, with the
éimension of a length, and p=1 or 2. This expression is sub-
stituted for the spherical Bessel functions of krl and kr2 in

the cdefinition (6) of J The two summations are then

2122L

interchanged with the integration over k. It will be proved
in section III that this interchange is proper and that con-

sequently the resulting series converges. Thus we have
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. _ L
JJL 3 L(rl,rz,R) = z Z ﬁN (R, al,a

172 —0 n —0
>di (r,/a,) (r,/a,) . (19)
1477171 2%222 2/ 92

where the function i;l(r) is defined by (15) and the function

@%L(R,al,az) is defined by

L -

2N+L

< ax exp (-k2/4) ¢ 5p(p) . (20)

( JL is the same as @%' of Salmon, Birss and Ruedenberg (1968,
Eg. 2.1).) Here
N = nl+n2+(21+£2—L)/2 (21)
o = ®/(a,’+a,”) /2 . (22)

Note that the index N, by virtue of (9a) and (9b), is a non-
negative integer. The integration variable in (20) is related
to that in (6) by the substitution « = k(a12+a22)l/2 .

When this expression for the r-édependent factor, (19),

is substituted into the bipolar expansion, (5), the result is

a new form of the bipolar expansion
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1T T v e Gty B
rlZ - waqz (Ryallaz)Aql (rl/al)qu (rz/az) 4 (231

in which

233
q 2=0 m=-2 n

. 2 L., m.m
= _ . 12 1%2™1™2
quqz (Rlalla2) = ( l) ~ YLM(GIQ) UJL

L
XG% (R,a,,2,) (25)
A (E) =¥, (8,8)b ,(x) . (26)

In (25) the summation over L is characterized by (9a) and

22'mm*
L

by (8). (qu' is the same as R

is defined by (7), and M is given
1

(9b) , the guantity w
Q_ , of Salmon, Birss and
Ruedenberg (1968, Egs. 1.23 and 1.26).)

On the other hand, when (19) is substituted into (12)
and the summations over n, and n, are formally interchanged
with the volume integrations, a new formula for I;z'mm' is
obtained. We shall see that the validity of this interchange
of summation and integration depends upon the form of the
orbitals u. Supposing for the moment that it is valid, we

L
substitute the new expression for Ilz'mm' into (11) and find

a new formula for the integral defined by (1)
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>
In z Z quqz(R'al'aZ)

4; 9,
xF (1aB,a,)F (2CD,a,) ’ (27)
919,9;, 1" g,9.94 2
in which
F  (pPQ,a ) = fav_ £ (pPO)L. , (r_/a)
[ ' [)
9,99 P P A m,q9 Dty PP
- * -> -> -> 2
fdvp ug (er)uq.(er)qu(rp/ap) . (28)

Here the quantity f is defined by (13), the gquantity & by
(15) and the quantity A by (26); the functions u are the
atomic orbitals. Of course, (27) could equally well be derived
by substituting the new bipolar expansion, (23), into the defi-
nition of the electronic interaction integral (1).

It was possible to separate the volume integrations in
(27) because of two properties of the r-dependent factor as
given by (19): first, each term in the series is a product of
a function of rys @ function of Ty s and a function of R;
second, the expression has the same functional form for all
values of Xy s Ty oy and R . This second property contrasts
with that of earlier expressions for the radial factor
(Carlson and Rushbrooke, 1950; Buehler and Hirschfelder,
1951; Sack, 1964), which have different functional forms

according to the relative values of Ty s Iy and R ; there
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v

Figure 1. The four regions found by Carlson and Rushbrooke

are four forms, one for each of the four regions shown in
Figure 1. However, these functions are all closed expressions,

whereas (19) contains a double infinite series.

B. Evaluation of é%L
The integral in (20) can be expressed (Abramowitz and
Stegun, 1965, Item 11.4.28) in terms of the confluent hyper-
geometric function M(a,b,x) (Abramowitz and Stegun, 1965,

Items 13.1.1-13.1.10). The result is
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2n_+42 2n.+2
L ~ 171 27 %2
&% (R,a;,2,) = a; a, T (L+N+1/2)

2 2)(2N+L+l)/2 1

x[ (a,“+a, T (L+3/2)1

«22N*L Loy (1aN+1/2,143/2,-0°) . (29)

Now it is convenient to distinguish the cases N=0 and N>0.
When N=0, which implies nl=n2=0 and L=21+22 , we have

(Abramowitz and Stegun, 1965, Item 13.6.10)

L

M(L+1/2,0+3/2,-0%) = (L+1/2) 0 2071 y(1+1/2,0%) ., (30)

where y(a,x) is the incomplete gamma function (Abramowitz and
Stegun, 1965, Item 6.5.2). Consequently

L
1 2 _-L-1 2L

L _ 2
®,"(R,a;,a,) = a; ~a, °R y(L+1/2,0°) .  (31)

In the case N>0, we use the Kummer transformation (Abramowitz

and Stegun, 1965, Item 13.1.27)

M(L+N+1/2,L+3/2,-0%) = exp(-02)M(-N+1,1+3/2,p0%) , (32)

and since (-N+1) is a nonpositive integer, the righthand side
is related to the Laguerre function of (17) by (Abramowitz and

Stegun, 1965, Item 13.6.9)
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M(-N+1,L+3/2,0°)
= (1) 11 (@43/2) /1 @l 1n, T2 0% L 33

Substitution of (33) into (32) and then (32) into (29) yields

2n.+4 2n.+4
@ L(R,a 171 2 2/(a12 2)L+N+l/2]

N>0 l,a2) = [al a, +a2

L+2N

x2 (N—l)!RLexp(—pz)LN_lL+l/2(pz) . (34)

With &NL given by (31) and (34), the function W__, of
(25) has now been expressed in terms of known quantities.

C. Special Cases of qu,

Sometimes it is useful to define the coordinate systems
ocn P and ¢ so that both z axes coincide with the vector
R = ;Q_§P , which implies 0 = 0. This leads to the simplifi-

cation

= = 1/2
YLM(O—O,@) = GMO[(2L+1)/4n] (35a)

and, because of (8),

m,+m, = 0 . (35b)

Thus, the function W q assumes the form
1=2
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2
Rz, ,a,.,a,) = & 5 1 1/2
£.,2 m,m
1727172 L
Xwy, ﬁ% (R,ay,a,) . (36)
yRomymy

Note that my = -m, and M = 0 in the definition of w ,
(7).
2. R =0

When the two points P and Q coincide, i.e. R = 0, the
expression for qu, is considerably simplified. To find the
new expression, one must investigate the behavior of @%L as
R -+ 0 . We substitute the series expansion for y(a,x)
(Abramcwitz and Stegun, 1965, Items 6.5.4 and 6.5.29) into
(31) to obtain

% L

1 2 L+1/2]

L _ 2 2
@% (R,al,az) = [al a, /(al +a2 )

Ll on+1) 1RE (14cR%4+.-4) . (37)

x[2
For N>0, we substitute the explicit polynomial expression for
2

-

L x) (Rbramowitz and Stegun, 1965, Item 22.3.9) into (34)

to obtain
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2n.+9% 2n.+2
L . i 71 2 72 2 2. L+N+1/2
@%>0 (R,al,az; = [al a, /(al +a

55 ]

L+N+1

*2 [(2N+L-1) 1!/ (2L+1) !

T J =
XeXP(—oz)Rb(l+c'R2+---+c"th 2). (38)

It is clear that @&L(Rzo,a,a') vanishes in both cases unless

1=0, which, according to (9a), is possible only if 21=22 .
rfor L=0 we obtain

é%o(o,al,az)

. 2n,+2 2n.+4
N 1 2 2, 2,N+1/2

= 2 (2N l)llal a, /(al +a, ) , (39)
where we have introduced 2=21=22 ané (~1)!!=1 . The expres-

sion in (39) is valid not only for N>0, but also for N=0,

because the simultaneous conditions L=0 and N=0 imply

nl=n2=ll=22=0 .

When 1L=0 (%a) implies, in addition to 21=22=£ , that M=0
and m=-m,=m . These conditions lead to great simplification
in the expression for w.

The result is (Rotenberg et al.,
1959, p. 12, Eg. 1.54)

24m,~m _ 2/2 L0 /2 20

wg = 87 (-1) ' (22+1)
\m -m 0/\0 6 G

(40)
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These results, (39) ana (40), along with the fact that

Yoo (6,%) = 1/2/7 , (41)

00

are substituted into the definition of ch, , (25), to give

S _ N+3 )=, I -
waqz(o,al,az) = O—ml'mZéQIQZ 2 YT (=1) (2N=-1) !}
2n.+32 2ri~+2
xa, T a, 2 /(a12+a22)N+l/2, (42)
where m=ml ana 2=£l . This is the one-center limit for
W__, , that is, the limit when R=0 or P=¢ .

gq
D. Special Cases of the Bipolar Expansion
This section will deal with the forms to which the bipo-
lar expansion reduces in certain cases, and some mathematical
consequences of them. First the one-center limit will be

considered, and then the multipole (large R) limit.

1. One-center limit (R=0)

We want to simplify the expansion (23) under the condi-
tion R=0. In the previous section an expression (42) was
found for ch,(6,a,a'). That expression and the definition

of Ac , (26), are substituted into (23); the result is

-
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© + 9
-1 *
T2 = :E :Z Yom(8y7919¥ g (83-0))
i=0 m=—2
xVT 2 2 3(on-1j 11 /(a1?'+a22)1\“l/2

n —O n —O

2n.+2 2n2+2

. 1
xa 2y by ylmi/ay) £n2£<r2/a2) . (43)

1
N = +n.,+ -

where N n,+n, A
Now, since P anéd ¢ coincide, the positions of the two

electrons are specified with respect to the same origin, and

12
Walter and Kimball (1944, p. 371, Eg. V17))

o 4 2
47 <
ZZ 22 am (817910 Y0 e 2'¢2)(22+1][r z+1}' (44)
>

2=0 m=-4

r is given by the Laplace expansion (see, e.g., Eyring,

Then by comparing (43) and (44), we deduce the existence of

the following series expansion for r<£/r>£+l :

r L
< (2z+7) E E _
o vl - (2N 1

—0 n —0

2 2.N+1/2
2 /(a; " +ay™)

x nlﬁ(rl/al)A;nzi(rZ/aZ) ’ (45)
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which, for the choice al=a2=l , reduces to

r<£ 1/2
5T = [E} (22+1) (2n +2n +24-1) !
—0 n, =0

x£nl£(rl) ocnzz(rz) ) (46)

This series converges because, as will be shown, the series

of (19) converges.

2. Multipole limit (large R)

In order to determine the form of the bipolar expansion
(23) for large values of R, let us first examine the behavior
of the function 5%55, which contains all of the R-dependence.
It is clear from (34) that 02NL decays exponentially for
large R if N>0 , so only terms with N=0 make a significant
contribution to rlz-l when R is very large. These terms con-
tain the incomplete gamma function, which can be expressed as
the difference of a constant and a monotonically decreasing

function of the argument (Abramowitz and Stegun, 1965, Item

6.5.3)

y(L+1/2,0%) = T(L+1/2) - T(1+1/2,p%) . (47)

Here T (a,x) is the complemented incomplete gamma function,
and the quantity p was defined in (22). For large p, the

asymptotic expansion (Abramowitz and Stegun, 1965, Item

6.5.32)
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T(L+1/2,0%) = exp(-p2) p2 L7111+ (1-1/2) 072
+(L-1/2) (L-3/2) p 24.--] (48)

hclds; thus, ﬁ%L also contains a term which decays exponen-
tially. 1In fact, (47) shows that @OL can be expressed as a

sum of a short range term, IQOLSR , anéd a long range term,

LR _
oL
égL(R,al,az) = @%LSR(R,al,az) + {QOLLR(R,al,aZ) (49)
where
éQOLLR(R’al,aZ) ) alzl a222 L 1Rt ath
XF(21+£2+1/2) (50)
and
@OLSR(R,al,aZ) = alzl a222 R—QI _22—1 221-’-22
xr(zl+22+l/2,pz) . (51)

Eere we have used the fact that N=0 implies that L=21+£2 .

This decomposition (49) enables us to decompose the expan-
sion for r12— in a similar way into the sum of a short range
term, SR, comprising the terms which decay exponentially, and

a long range or multipole term, LR, comprising the other
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terms:

o = (LR) + (SR) . (52)

(This separation is analogous to that given by O-ohata and
Ruedenberg (1966, Eg. 4.4).)

As we have seen, the long range term contains only terms
with N=0. This implies that nl=n2=0 and L=21+22 , that is,
that only one term from the summations over ny s Ny and L

contributes to the long range term. To evaluate this term we

shall use (50) and the relation
b ox) = x*/(20+1) 1! (53)
02 ° T ’

which is a consequence of the definition of cﬁnz , (15), and

the identity Loa(x) = 1 . The resulting expression for the

long range term is

(LR) = R © D) M2y homy)Y, o (0,9)
Ly ®y 2y Wy 12’

L 2
2
SRR ORI LIV R LTS
(54)

where
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2
2b(zlmlzzm2) = (-1)

1 A te

> 2

r(zl+z2+1/2)

2.8 m.m
XWy L. 172l 2/[(22 +1) 11 (22.,+1) 18 . (55)
Lytis 1 2

Use of the properties of the 3-j symbols (Edmonds, 1957,
p- 48, Eg. 3.7.10) and of the expression for T(2+1/2) in
terms of factorials (16) leads to

2 ,+m,+m
(-1) 2 7172 8,“_3/2

N 1/2
[(2zl+1)(222+1)(221+222.1)]

%@(lelzzmz)

2
[ (g,+8.+m,+m,) ! (L, +%,—m,-m,) ! 1/
y 1702712 1772 71 2 ) (56)

The expression for the long range term given by (54) and (56)
can be used to obtain Silverstone's (1966) expression for the
multipole term of a two-center Coulomb integral. Now if we
make the particular choice 6=0 , (35a) and (35b) hold, and,

letting m=m,=-m, , we find

L

s 2
0(0,@) = 47(-1)

%(lelzl—m)Y£ +9

17%27 s )

1/2

{(221+l)(222+1)]

x[(2g+m) (8 mm) L (R,0m)  (1,mm) 117/ (57)
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If this equation is substituted into (54), the result can be
used to obtain the expression of O-ohata and Ruedenberg (1966).

The snort range term is given by

31
(SR) EE :E (8,0,)7, - <62,¢2)<-1)

X

14, m.m = =
1727172 E E SR
z (JJL YLM(G’ ®) “ et ﬁNL (R'altaz)
nl—O n2—0

L

X

D 7
a, (r,/a,) (r,/a.) ; (58)
nlzl 1’71 45222 2772

the function ézNLSR is defined by two equations, (51) and

= ﬂ L(R,al,az) ’ (59)

R
(R,2;.2)) N>0

&

N>0,L

with &%)OL defined by (34). It is clear from (34), (51) and
(48) that, for very large R, the short range term becomes
negligible compared to the long range term. More than this
can be said, however. The long range term given by (54) and
(57) is identical with the multipole expansion which Carlson
and Rushbrooke (1950) showed to be exact in the entire region
R > r. +x

172
short range term vanishes identically in this region. Since

(region S3 of Figure 1l). This implies that the

this is so for all values of the angles, the coefficient of

each product
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Y (9 l’*’l)y

)Y (0,9)
1™ 2T LM

o (0509,

in (SR) must vanish. That is, for each allowed combination

of 2, , 2, , and L (see (%a) and (9b)), we have

1 2
0 = EZ 'EE (Q- SR(R,a r84)
n7=0 ny=0 NP 12
)
x dhlﬁl(rl/al) 4322 (r2/a ) (60)

for r;#r, < R . When L = 1,*%, , the first term of this
identity has N=0 and , consequently, contains the complemen-—
ted incomplete gamma function. Then (60) can be put in the
form of an expression for that function; substitution of (51),

(59), (34) and (15) yields

22.+22..+1 '
Fagt1/2,0%) =0 L2 expl-pd) Dm (61)
nyn,
where
= 2 i without the term with n=v=0 (62)
n=0 v=0
T = A (a;,a, ),C (p,x/ay,r5/a,) (63)
ln22122 1 n,y 22 2 1 2
e : n+v ; 2n

nva o’ [2(n+2)+1]11[2(v+k)+l]--(a +b?)
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i;vzk(p,r,s)

- £+A+1/2( 2
n+v-1 P

= )L 2+l/2( l+l/2(52

r2)L
n v

) . (65)

When L < ll+12 , there is no term with N=0 , so that ﬁ%LSR

in (60) can be replaced by &&L . The series of (60) and

(61) converge because that of (19) does.
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III. PROOF OF CONVERGENCE

The derivation of the radial factor (19) involved two
interchanges of summation and integration (i.e. term-by-term
integrations). It must be shown that each of these is per-
missible. The main theorem to be used here is Theorem 1 of
Appendix A. The proof for each interchange consists of two
parts: first, to demonstrate that the interchange is valid

for a finite interval of integration, and second, to show that

one side of

{:k DRIRED

n=0 n=0

fdk 1| (66)
0

converges, where In is the integrand in question. To facili-
tate the proof, we rewrite the series for the spherical Bessel

function (14) in the following way:
j, (kr) = 2 T *(xa,r/a) (67)
2 A=t D

where

, (V7/2) expl- (k/2) 2] (k/2) 2Fhehy 241722
T “(k,x) = .
n T (n+2+3/2)
(68)

The value of the scaling factor a does not aifect the argu-

ment, and will be set equal to unity for simplicity.
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A. Validity of First Interchange

From (6) and (67) we have

JﬁlzzL(rl’r2’R) = ;% 42; ;2; Un(k) (69)
where
1 : .
Un(k) =T, (k’r1)322(kr2)3L(kR) . (70)
We need to show that
T, FL Ty R —/% n; _{):k u (k). (71)

1. Interchange for finite interval

We shall use Theorem 2 of Appendix A to show that

K [o°) [0} K
fdk z Un(k) = z fdk Uy (k) , (72)
0 n=0 n=0 0

for any positive K. It is clear from the definitions of Un ’
(70) , and Tn , (68), that Un(k) is integrable on the interval

0 < k < ® , or any subinterval thereof. It remains to show

that the series

o0

U_ (k)

converges uniformly on the interval 0 < k < K , for any posi-
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tive X. In order to demonstrate this, we must first show
that ZT,_l converges uniformly on this interval. Because of
the following inequality for generalized Laguerre polynomials

(Erdelyi et al., 1953, p. 207, Eg. 14)

’Lna(x){ < &/ (a+tn+1) /[T (a+1)n!] (73)
we have
an£(k,r) ¢ T P, (74)
with
5 0 _ UE/2expl-(/2) %) /) P i oo r/2) (55,
1 r(2+3/2)n!

The series

[ (/7/2)rrexp(r2/2) (k/2) */T(2+3/2) ]

z ofng(k,r)
n=0
xexp[-(k/z)z]ji(k/z)zn/nz
n=0

(V7/2) rrexp (r2/2) (k/2) */T (2+3/2) (76)

converges uniformly on 0 £ k < X for any positive K, because
it is a power series in k with an infinite radius of conver-
gence. (See Theorem 5 of Appendix A.) Therefore, by the

Cauchy condition for uniform convergence of series, Theorem 3
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of Appendix A, for every >0, there exists an N such that n>N
implies

n+p

(77)

i=n+1

for each p=1,2,---, and every k in 0 < k < K. But (74) implies

n+p | i n+p n+p
z .| < | I, | z i}’ , (78)
i=n+l fl =n+1 i=n+l1

so that

§ T and E |T
n
n=0 n=0

also fulfill the Cauchy condition. Therefore these series
converge absolutely for any nonnegative k, and uniformly in

0 £k £ K for any positive K. Now in view of the fact that
E 1/2
jn(x)] < 1/(2n+1) <1 for real x, n>0, (79)

which can be derived from (Abramowitz and Stegun, 1965, Item

10.1.50)

2]

D enn =1 (80)

n=0

we have
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lu | < I, | . (81)
and therefore
n+p n+p ’ ’ n+p
l :Z lu. 1] < EE T 1] < e - (82)
liSa+l i=n+l i=n+1 [

That is, the series for U  and that for |U | satisfy the
Cauchy condition, which means that the series for Un con-
verges absolutely for all nonnegative k, and uniformly in

0 £k 2 XK for any positive K. Thus the conditions of Theorem
2 are fulfilled, and (72) holds. Note that this argument

holds for all values of {rl,rz,R}.

2. Interchange for infinite interval

In order to satisfy the remaining condition in Theorem 1,

we shall show that
o0 o]
}E .[dk lu_ (k)|
n=0 0 n

N %,+1/2
= 5"32 ! (r,) |/ (e +3/2)

2n+2l

xfdk exp[-(k/2)2] (k/2) Ij‘Q (krz)jL(kR) |
0 2

(83)
converges. For this purpose, it is necessary to have an

upper bound on [x-jn(x)l. We have seen, from (79), that
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]jn(x)] is bounded, so that when x=0, x-j_ (x) =0 . For all
other values of %, it is clear from the relation (Abramowitz

and Stegun, 1965, Item 10.1.8)

x-jn(x) = sin(x—nﬂ/Z)Pn(x) + cos(x~nn/2)Qn(x)/x , (84)

where P_(x) and Q_(x) are polynomials in (l/xz), that [x-jn(x)l

is bouncded. Thus, for nonnegative x,

19 _(x)] 2 A(n) /x , (85)

where A(n) 1s a positive number which depends only on n. For

example, since we have (Abramowitz and Stegun, 1965, Item

10.1.11)

jO(X) = sin (xX) /x , (86)
it is clear that 2(0) = 1 .

a. First term, for all values of iEngz,R} For all

values of {rl,rz,R}, we can obtain an upper bound for the
first term in (83). Application of (79) to both spherical

Bessel functions shows that

fdk lu. (k)] < ¢, (r;) (87)
0 0 5,01

where



33

c, (x) = [ﬁz’] (”/r (243/2) ] j;Zk expl-(k/2) %] (k/2)*
- [[121} r*r(g/2+41/2) /T (843/2) . (88)
Then
;];Zk [T, (k)| < le(rl) + le;k lUn(k)l , (89)

and the left side converges if the right side converges.
Thus we will consider only the terms with n>0 in the follow-
ing.

b. Case when r,,R > 0 In order to establish the

convergence of the right side of (89), it is necessary tc use
somewhat different methods, depending on which, if any, of
the guantities Tyr Iy R are equal to zero. First, when r,
and R are both greater than zero, (85) can be applied to both
spherical Bessel functions in the integral of (83). The

result, for n>0, is

f°° /=) [3(2,)A (@) |

where
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L 2+1/2

s (xr) =« n

2
ng

(rZ)I/P(n+2+3/2)

xjrak expl-(k/2) %] (k/2)2Rt42
0

- rzan2+l/2(r2)[T(n+£/2-l/2)/r(n+£+3/2) . (91)

Thus the series of (89) converge if the series

converges. To determine this, we must examine the behavior
of the generalized Laguerre polynomial for large n.

i. Subcase when ;> 0 If ry > 0 , Fejér's

formula (Erdélyi et al., 1953, p. 199, Eg. 1) can be used:

Lna(x) - (l//?)ex/zx_a/2—1/4na/2_l/4cose

+ Qw34 (92)
where 9 is a function of x, n and a. Thus
lim s_, (r) = [exp(r®/2)//7r]lim|coss|a , (93)
n-o n-=o ng
where
/2
a, =n Ir(n+2/2-1/2) /T (n+2+3/2) . (94)

If 2 is an even number, 2p, the argument of each of the gamma
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functions is half an odd integexr, so that one can cancel fac-

tors; hence

1

3, 2p = nP [ (n+2p+1/2) (n+2p-1/2) « =+ (n+p-1/2)] - .  (95)
When p=0

a_y = [(n+1/2) (n-1/2)17" = (a%-1/0)7" (96)
and

lima /a2 =1, (97)

o

so S a,p converges by Theorems 7 and 8. When p>0
n=l

n20 < [(n+2p+1/2) (n+2p-1/2)1"% < n 7% , (98)

converges by Theorems 6 and 8. If & is an odd number, 2p+l,

SO

the argument of the gamma function in the numerator of (94)

is an integer, so

+1/2
&n,2p+1 © Pt/ (n+p—-1) ! /T (n+2p+5/2) (99a)
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a .1 2p+1 = (n+l)p+'|'/2(n+p)!/I‘(n+2p+7/2)

(W2 P 2 (nep) / (ne2p45/2) 1o, 5o0p 7 (99D)

thus
a_ - p+l/2
_n+l,2p+l [1+£] (n+p) / (n+2p+5/2)
a n
n,2p+l
=1-2/n+ G/md . (100)

Then, according to Theorem 9,

z 2n,2p+1

n=1

converges. It has now been shown that

2

n=.

[20]
a
s T

converges for all values of 2. Therefore, since

jcosgla , < a_ , (101)

[0

|cos6la converges by Theorem 6, and, in view of (93),
lng Y

n=1
2 snz(r>0)

n=1

converges by Theorem 7.
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ii. Subcase when 5139 If rl=0 , the only non-

trivial case is that in which 21=0. If 2l>0 , all of the
integrals cn the left side of (89) are identically zero.

Then we must test

(o]

ano(o)

n=1

by using (Erdélyi et al., 1953, p. 189, Eq. 13)
Lna(O) = I'(a+l+n)/T(a+l)n! . (102)

We have, substituting this identity into (91)

s.o(0) = T(n-1/2) /T (3/2)n! (103a)
Sper,0(0) = T(n+1/2)/T(3/2) (a+1)1 (103b)
thus
S (0)
ntl,0 = n21/2 _ 3 _ 3,00 + 3/2n(n+l) . (104)
snO(O) n+1l

Therefore EE snO(O) converges by Theorem 9. It has now
n=1 -
been shown that EE snz(r) converges for all r and %; this,
n=1
together with (90) and Theorem 6, shows that (89) converges

for all values of ry if r, and R are greater than zero.
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c. Case when r,_> 0 , and r, or R, but not both, equals

zZero In this case, we need the value of jn(O), which is

(Abramowitz and Stegun, 1965, Item 10.1.4)

jn(O) = 8,0 . (105)
This relationship shows that if r2=0 and £2>0, or R=0 and
L>0, then both sides of (71) are identically zero. Hence we
need consider only the case in which r2=0 and 22=0, or R=0
and L=0. Now since one of the &'s is zero, the other two
must be egual, in view of (9a). Let rg designate whichever
of r, and R is greater than zero, and let £ designate 21=Rg.

Then we apply (85) to jz(rg) and (105) to jO(O), to obtain

for n>0
f;dk U, ) | s (F7/2) 1A () /25 TV (x)) (106)
where
v_,(x) = {rzan2+l/2(r2>!/r<n+z+3/z>]
xfdk exp - (k/2) 21 (k/2) 22H4-1
0
= r’LIL 21722 il‘(n+2/2)/1" (n+2+3/2) . (107)

n

Again we apply Fejér's formula (92) and find
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. " 2 .
iiﬁ Vnz(r) = [exp(xr©/2)/x/7] iiz [coselbn2 ’ (108)
where
bni = nz/zr(n+z/2)/r(n+z+3/2) . (109)

H

I is an even number, 2p, then the argument of the gamma

7

function in the numeratoxr is an integer, and

- AP _ -
bn,2p = n* (n+p-1) ! /T (n+2p+3/2) (110a)
1,20 = (n+1) P (a+p) 1/T (n+2p+5/2) . (110b)

Therefore
b P
pELe2p o (1+l] (n+p) / (n+2p+3/2)
n
n,2p
=1 -3/2n+ &1/m% (111)

SO Z bn 2p converges by Theorem 9. If 2 is an odd number,
n=1 !

2p+l, the argument of each of the gamma functions in (109) is

half an odd integer, and cancellation occurs:

b .. = nP2/(n52p43/2) (ne2p+1/2) - -+ (ntp+l/2)
n,2p+1

< 1/n3/? (112)



40

Thus

4 bn,2p+l converges by Theorem 6, and we have shown

n=1

that

converges for all 2. Then, since

lcoselbnz b, (113)

jz Icoselbnz converges by Theorem 6; and thus, because of
n=1

(108), j; 'qu(r) converges by Theorem 7. Finally, because
n=l

of (106), (89) converges by Theorem 6 when r, or R is zero.
This result, together with that of the last section, demon-
strates that the conditions of Theorem 1 are satisfied. Thus
(71) is valid, and its right side converges absolutely, when

no more than one of {rl,rz,R} is zero.

3. Interchange when two of iElLEZ'R} are zero

If two of the r's egual zero, then, because of (105) and
(9a), both sides of (71) are identically zero unless

2. = &, =L = 0. In this case

2y e - .
JOOO(O,O,r) = L7?J j;dk jO(O)JO(O)jO(r)

(7%J j.dk [sin(kr)l/kxr = Jn/r , (114)
0
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where we have used (105) and (86). This integral converges
conditionally (Apostol, 1957, p. 433, Ex. 4); that is, it

converges but dek[[sin(kr)]/krl does not. But

o]

fdk; [sin(kr)]/kr]| < fdk 2 ]Un(k) | , (115)
0 0 n=0

so the right side does not converge, and the condition of
Theorem 1 is not satisfied. Nevertheless, it can still be
proved that (71) is valid in this case; one simply evaluates
each of the two sides and shows that they are equal.

a. Case when r, = 0 When r; = 0

2 § r- 2 S i 0 .
- dk U (k) dk T (k,O)'l'j (kr)
& T = j; n 0

o0

> iz, Y200y /1 (n+3/2) ]

n=0

Jax expi- /221 /2 P3y 0)

° (11e6)
To evaluate this we substitute (102) for the generalized
Laguerre polynomial, and use (20) and (29) to perform the

integration. The result is
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o<

2 z dk U (k)
n=0 0
2 N 2
= 2 [T (n+1/2) /n!]M(n+1/2,3/2,-17)

n=0

(2]

iy /2,0%) + :z; exp(-r)L__ Y2A/m, a1
n=

i

where we have used (30), (32) and (33) to express M(a,b,x).
Now if we substitute n'=n-1 in the last series, we find
(Exrdélyi et al., 1953, p. 215, Eg. 19) that it has a known

sum, namely

rlexp(r?)r(1/2,1%) = S L 2 /e L (118)
n'=0

Therefore

)
7= 2 erk u, (k)
n=0 0

r ly/2,0%) + r/2,09]

ity = me o (119)

Comparison of this with (114) shows that (71) is indeed
satisfied in this case; however, since the series in (118)
does not converge absolutely, neither does that in (71).

b. Case when £l >0, £2 =R =0 When rl =r >0




) 22
dk Un(k) = o

e

o
]
o

o.‘o

«J ax expi- /2021 /20 2
0

- i L Y2 ? /) (120)
n=0
The last series is a particular case of the Fourier-Laguerre

series of a power (Erdélyi et al., 1953, p. 214, Eqg. 16)

x° = T (a+s+1) j? r(n-s)Lna(x)/[T(-s)P(a+n+l)]
n=0

under the condition -s < l+min{a,a/2-1/4} , with parameters

s==1/2, a=1/2 and x=r2 . Then we have

2 :
7= IZ)];dk Un(x) = Ju/r , (121)

and comparison with (114) shows that (71) is again satisfied;
but, as in the case when rl and one of the other two r's are

zero, the series does not convexge absolutely.

4. Conclusion for first interchange

It has been shown that (71) holds for all wvalues of

{rl,rz,R} except r) =1r, = R=0 . In that case l/r12 is
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infinite, and as one might expect, both sides of the equation
diverge when Zl =%, =L= 0 . If any of the &'s is not zero,
both sides of the equation are identically zero. Furthermore,
it nas been shown that the right side of (71) converges abso-
lutely as long as no more than one of the r's is zero. In
fact, when all of the r's are greater than zero, the conver-
gence is like that of zn=l n~2 ; when any one of the r's is
zero, the convergence is like that of ] _, n"3/2? ; but when
two of the r's are zero, the terms go like n_l , and the con-

vergence is conditional (that is, not absolute). Here we

write out (71) explicitly:

~ a2,
JmllzL(rl’r2'R) = P4 r; T L, (r;%)/T(n+2,+3/2)

"Izn+zl,22,L(r2'R) ' (122)

where

INQL(r,R) = .gdk exp[—(k/2)2](k/Z)le(kr)jL(kR) . (123)

B. Validity of Second Interchange

Now we substitute (67) into (123) and obtain

(o]

Igep (€ R) = j;dk z v, (k) (124)

n=0

where
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L 2 N.
Vo(k) =T "(k,r)expl-(k/2)7] (k/2)" 5 (kR) . (125)

We need to show that

X da

IN" (r,R) = 2 fdk Vn(k) . (126)
n=0 0

1. Interchange for finite interval

First, it is necessary to show, using Theorem 2, that

K

o] [2¢] K
fdk Z vV (k) = zfdk v_(k) (127)
0 n=0 © n=0 0 n

for any positive K. Certainly Vn(k) is integrable on the
interval 0 £ k £ K , or any subinterval thereof. It must be
shown that the series Zz=0 Vn(k) converges uniformly on the
interval 0 £ k £ X , for any positive K. In section III.A.1l
it was proved that 2:=0!Tn! converges uniformly in

0 £ k £ K, for any finite XK. Therefore it satisfies the
Cauchy condition, Theorem 3; that is, for every €>0, there
exists an N such that n>N implies

[ n+p

7. l] < ¢ (128)

™M

ji=n+l1

for each p=1,2,*°* and every k in 0 £ k £ XK. Now the guantity
fexp[-(k/2)2](k/Z)NjL(kR)] is bounded in 0 £ k £ K ; let its

maximum value be denoted by B. Then
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n+p n+p
Z V.| < z V.|| < Be = e (129)
Ry 1
i=n+1 { i=n+l1

for each p and every k in 0 < k £ X if n>N. That is, for
every €'>0, there exists an N such that n>N implies (129) for
each p and every k; thus the series Z:=O Vh(k) and

Z§=0 |Vn(k)[ converge absolutelv for any nonnegative k, and
uniformly in 0 £ k < K for any positive K. Therefore the

conditions of Theorem 2 are satisfied, and so (127) holds.

This argument is valid for all values of r and R.

2. Interchange for infinite interval

The last step consists of showing that

jdk 2 v (x) | = jdk exp{—(k/2)2](k/Z)Nle(kR)|
0 n=0 0

(22}

XZ IT_*k,z) | (130)
n
n=0
converges, in order to satisfy the hypothesis of Theorem 1.

For this purpose we use (74) and (76) to obtain

fdk i an(k)l < (/E/Z)rgexp(rz/-?)/l"(2+3/2)
0

n=0

xfdk expi-(k/2)%1 (k/2" 5 xm) | .
0
(131)

The integral on the right exists, so the left side must con-
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verge. Then according to Theorem 1, (126) is valid, and, in
fact, the convergence of the right side is absolute. Note

that this proof holds for all values of r and R.

C. Validity of Bipolar Expansion

It has now been shown that both of the term-by-term inte-
grations used in the derivation of (19) were permissible.
This means that (19) and the new form of the bipolar expansion
(23) are valid. The sums on the right side of (19) converge
in all cases except when r, =r, = R =0 and Zl =2, = L=20;
in that case, both sides of the equation diverge.

The final result of this section can be obtained explic-
itly by substituting (126), {125) and (68) into (122); it is

21+1/2 2
(rl )

o %
r, 1 L
I g.n(FprEy R = Zg .
1%2 - T(n.+2.+3/2)
nl— 1 71

0
® 2 2,+1/2 2

2 2
x, an (r2 )
X
T(n2+22+3/2)

n2=0

t].dk exp [-k2/21 (k/2) 2 75 (kR)
0
(132)

in which N' is the N of (21). This is the same as (19),

with al=a2=l.
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IV. INTEGRALS OVER GAUSSIAN ATOMIC ORBITALS

A. ZIntegrals over Complex Gaussians

1. Coulomb integrals over Gaussian charge distributions

The results of this section were obtained by Birss
and Ruedenberg (Salmon, Birss and Ruedenberg, 1968); they are
summarized here in order to make the discussion complete.

It was shown by Boys (1950) that all electron repulsion
integrals with Gaussian atomic orbitals can be reduced to

integrals of the type
[9, lgp] = [sv fdv r, 7t (c.%,)g. (g, Ty,) (133)
alSg? T g1 2 12 gqa a*al’9g ‘b B2°

where the gq represent Gaussian "basic charge distributions”

given by

2n+
) n

> 3 2.2 ,
O = Opgn(C0) = T (en) T lexp (-t Y  (6,9) . (134)

d

As in section II, the coordinate axes on the centers A and B
are parallel, but N and zg do not necessarily coincide with
the AB direction.

If in (1) and (28) the orbital product uq*uq. is replaced
by the Gaussian basic charge distribution gq , then (27) be-
comes an expression for the integral [gAlgB]. Now, since the
centers P and @ in the bipolar expansion are arbitrary, we can

choose P=A and Q=B, so that the position of each electron is

specified with respect to the same origin in both the expan-
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sion and the charge distribution. This enables us to use the
orthogonality properties of the spherical harmonics in (28)

to obtain

Fo o (z,a) = jﬁv gq (cr)Aq {(x/a)

9p%a a D
“p
= 69‘ 2 Om ,-m Gq 7 (135)
a o) a

where qu is defined by

¢ X = (-1)mfr2dr 32y exp(-2%c?) £ (x/a) . (136)
g 0 k4

Choosing a=z -~ , using the definition of (15), and making the

substitution (Z;r)2 = t , one finds

k

G " = (-1t

[2(k+2)+1]11})

2+l/2(

xfdt ghr1/2 Ly t)exp(-t)t" . (137)
0

The integral in this equation is essentially an expansion

coefficient of t" in terms of the Laguerre polynomials

1+1/2
Ly

ing qu can be written as (Rainvilie, 1960, pp. 206, 207)

(t) , and therefore vanishes for k>n. The nonvanish-

3 7
qu _ [(-1)k+m/5‘r n! g[r(n+z+3/2)] ) (138)
!

S2k+L+1 Jlxt(n-x) 1] |T(k+2+3/2) |
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Now, substitution of (135) into (27) yields the final formula

for the Coulomb integral defined in (133)

N, By
_ -1 -1
[gAlgB] - jig :g Wnllzal-marnzlzbl_mb(ﬁl;a 'Cb )
nl—O n2-0
n n
XG 1 2 (139)

na ‘Q'ama an g'bmb |

It will be recalled that the derivation of (27) involved
term-by-term integrations which have not been proved to be
valid. Thus we must either prove their validity, or fird an
independent check on (139). There are, in fact, two such
checks (Salmon, Birss and Ruedenberg, 1968, section IV).
First, (139) can be derived from (1l1l)-(13) by replacing
uq*uq, by gq , interchanging the order of integration, and
using the polynomial representation for the Laguerre function
which results from the volume integration. Second, (139) can
be shown to be eguivalent to the results obtained by Krauss
(1964) , by rotating the axis systems on the two centers so as
to have z, and z_, coincident with the AB direction. Thus (139)

A B
is verified; the infinite series not only converge, but they

reduce to finite sums.

The nuclear attraction integral

[g,]6(x5p)] = jév gqa(caZA)/lfBl (140)



51

can be derived from (139) if the charge distributionlgB(;b§éz)

is replaced by the three-dimensional delta function

> 4 3,.3/2 2 2
§(ry,) = éli‘m[(cb /T Texp (=g, "rp,7)]
b

lim [(2/7)gy4q(2pZER2) ] - (141)
T, >
b

The final result is

m
[g,18(r5)1 = 8/7(-1) %y,

x Z Qa(R -1 0 1 (142)
&;1 'ga ’ n 4 m

The results of this section will be used in the evalua-

tion of integrals over Gaussian oxbital products.

2. Integrals with complex Gaussian orbitals

We now choose the orbitals u of section II to be unnor-

malized complex spherical Gaussian orbitals
& = 32 an fexp-t3Ay, (8,00 (143)

so that the integral to be evaluated is
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c,Ci C C
[Xa Xg IXc Xp I

H
!

-1

' C C Cc C
jdVl deZ Xp (l)XB (l)rl2 Xc (Z)XD (2) . (144)

The first step is to express the orbital product XACXBC as a

linear combination of the Gaussian basic charge distributions
defined by (134). To do this, we choose the point P such

that

> 2 2, > 2 2. >
P o= (g, /t,7)A + (g3 /tp7)B ’ (145)
and consequently (Boys, 1950)
2_ 2 2_2
exp (=g, r,"lexp(-g,"ry")

2

= expl-(g, %0, /e, Ry P lexp -0, % %1, (146)

where

2 _ .2, 2 (147)

Observe that the point P always lies somewhere on the line AB.
Next, we translate the spherical harmonic in each orbi-
tal, without rotation, to the point P, using the relation

(Steinborn, 1969)
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L
, mn €
rAzYRm(eA,QA) 820 g Qe Tp .Yen(eP'¢P)
e
XRAP Yl—a,m—n(eAP' AP) 7 (148)
in which the summation on n is governed by
in|] < ¢ (149a)
Im-n| < 2-¢ ' (149Db)
and the constant Qzemn is defined by
M g g My TN D
Qe TN /(N, N (150a)
and
N =TT = (2D /2] (o) (eem) 112 (150b)

The coordinates are related by fA = ﬁAP + fé . The result

of this last operation contains products of two spherical
harmonics with arguments eP,¢P ; to each of these products
we apply the identity (Edmonds, 1957, p. 63, Eg. 4.6.5)

— (_q\} (2e+1) (2¢'+1) (22+1)
st(a,¢)Y€.n,(e,¢) = (-1)" } [ i

}1/2

x ¥, _(6,4) (151a)
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with
' (151b)

These manipulations lead to an expression for XACXBC which

contains five summations; they are governed by

0 ¢ < zA (152a)
0 £ ¢' g RB (152b)
-€ +e
max < n < min (152c)
mp~tpte Lptma—g
_— e
max: < n' £ min (1524)
- ' I |
LmB ,Q,B+€ 2B+mB €
le-e'|
max < 8 < ete! ’ ete'+4 = even. (152e)
jm|

For computational convenience, we replace the first four

of these indices by new ones, defined by (151b) and

a = QA—QB—5+€' (153a)
3 = £A+RB—€—€' (153b)
(153¢)

§ = My ~My-N+n .

The summation on £ is interchanged with those on m and ¢,
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which leads to the final conditions on the summations

(154a)

A
=

—QB <

ol < 8

A

Latig=|2y-2g-a , ot+B = even (154b)

I'QA B"‘I

< 2 < 2A+£B-B , 2.+8_+0+2 = even (1l54c)

i | = A" B
Ny 3)

) (o)
TN B -m,-m_+8
B f < m < min A™'B L (1544)
-m -2 -a mA+£B+a
(-mB e gty o
mA-mB+m—22B—a+8 mA-mB+m+22B+a-B
m, +m_+mto-8 m_ +m_+m—o+8
max 2B < 8§ < min a8 (154e)
mA-mB-m—22A+a+B mA—mB—m+22A—a-B
—m, ~Mp—m-a-§ —M, ~My =m0+ B

The expression for the orbital product is

c C a B z
Xa Xa = Byn(o, 1)) Y ¥ ¥ 1707 C g (gporp) (155)
A “B AB Ls5& aBem “q, PP
where the following quantities have been introduced
r
_ L _ -1/2
B, (0,0 = |+ H3(1+c%) Br1erd) B} exp(-p%) (156a)
(156Db)
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T = QB/;A (156c)
9 = { (£A+£B-B-2)/2.2,.-m} (157)
_ m WA”
Caszm = (=1 g Qer YZA—e,mA—n(eAB' AB)
zB—s' mBn'
x (-1) Q'Q'Be 1 YZB'E ' 'm‘B—n T (GAB'QA.B)

(J(2e+1) (2e'+1) (28+1)

yr- . (158)

]1/2 e ' 2\/e ' &

nn'mf\00 O

The summations are governed by (154), and Zp is given by
(147). The constant Q is defined by (150), and €, €', n, and
n' can be obtained by inverting (151b) and (153).

c

Now, since the orbital product XACXB has been expressed

as a linear combination of the charge distributions Ip + the
integral I of (144) must be a linear combination of the inte-

grals [gP]gQ] of (133) and (139). We have

I=2RB, (py,T7)Bn(Ps,T5)
AB T11Tl7TCD M2 T2 (aBlmn)l (aBzmn)2

a B n a B n
1 1 1 2 2 2

XT o C G T o) C G
1 1 (aﬁzm)l qp 2 2 (aszm)z qq

> -1 -1

nlzlmlnzzzm2
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where G is given by {(138) and W by (25). This result was
first obtained, in a slightly different form, by Kinser and
Ruedenberyg (1971). They have discussed the constant CaBQm .

The index n has limits

0 <n < (2A+zB—s—z)/2 . (160)

A formula for the nuclear attraction integral can be
found in an analogous manner by replacing XACXBC by the delta

function of (141) and using (142) instead of (139).

B. Integrals over Real Gaussian Orbitals
For many purposes it 1is more convenient to use real

Gaussian orbitals instead of complex ones. Then we would like

to evaluate integrals of the type

R

R R R
I=1Ixyxg Ixg Xp |

R R -1 R R
jﬁvi jhvz Xp (Wxg (Drp, “xo 2)xg () (161)

in which the real Gaussian orbital XR is defined by

R C
X = ji Mo X , (162)
m u_:t‘ml mu Lu

Eere the complex Gaussian orbital XZuC was defined by (143),

and the constant Mmu is given by

Mg = 1/2 (163a)
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and for m #¥ O,

“al,nl Min|,-|n _ 1

“inl,m] M-ln],-|n] i

(163b)

1. Real orbital product

First we wish to express the product of two real orbi-
tals XARXBR in terms of the Gaussian basic charge distribu-

tions. The definition (162) gives immediately

R C c
X X =7 I M M X . (164)
Lppy gl U g "afa TBVB iaHa “4pHp

Substitution of the expression (155) for the product of com-

plex orbitals into this equation yields

R R
X X =B, (p,7) J ] M M
lAmA QBmB AB

m, U, m_u
Hakg A"A "B"B

B

x YT Ty %P g . (165)
o B gm aBim qp

The conditions on the summations are:
Hp = t]mA[ (166a)
ug = t[mBl (166Db)

—%p £ 0 £ &y (166¢c)
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la] < B < 2A+QB—]2A—2B—a] c+R=even (1664)
IQA—RB-a]
max < 2 < L,+2 -8B l+a+2A+£ =even (166e)
lu + I—B A "B B
A "B
~2 +2
—Ua~ug—B “H,~HoTB
max A "B < m < min A "B . (1L66£)
-uA—lB-aB ~Hptepta
“HpTipte L-ugtiye

On the right side of (165), only the constants M and C depend
upon the indices Ha and by d the other factors, containing
the dependence on the orbital exponents and electronic coor-
dinates, are independent of these indices. Thus it is desir-

able to rearrange the summations as follows:

D) g 1l g %

TITL (167)

M Yaplg

After considerable algebraic manipulation, we find the new

limits to be:

-2y S o < La (168a)
la] < 8 < 2 +2-[2,~250a] a+g=even (168b)
220 < 2 < %A+ZB—B g+a+g ,+o=even (168c)
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-min < m < min m| 2 my (1684)
i Thi
Hp = i]mAl (168e)
ug = i]mB[ ’ (168£)
with the definitions
Loo = max{|8,-Ly-al, | my [=Img| |8} (169a)
0
|my [-25-a
m, = max A B (169b)
Lo Im_ |- 2, +a
B A
LHmAI-ImBII-B
1B+[mA|+a
m; = min <4 +[mg|-o . (169¢)
|my [+ ]mg|+8
Notice that (168d) implies that when m is positive the sum-

mation on m will split into two sums

o T3
> 2
m=—mhi m=m20

terms with m values in between these ranges do not occur. 1In

addition to (168e) and (168f), there are the following re-
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strictions on My and Hp

luptugl < 248 (170a)
- Im[+|mg|-8
—m+|mB|+B
max —m-[mB[—B S My € min (170Db)
—m+2B+a
—m—zB—a
—Ux~—B-m ~u,+B-m
maxd > < u. < min A . (170c)
-4, ta-m B L. —o-—m
A A

Thus, not all four combinations of My and Mg will occur for
each m. In fact, Hubert Kinser (private communication on the
summation conditions, 1970, Iowa State University, Ames, Iowa)
has shown that for certain values of m none of the combina-
tions are allowed, which implies that these values of m are
not allowed.

With the summations restricted by (168)-(170), (165)

becomes

R
Bpg (PrT) 1 ) * of )

Xy mR Xy, = L9 (CP;P)DaBZm
ATA B™B o B 2 m =

P
(171a)
with

D =7 Y M M C (171b)
aBim TR Maly Tplp aBim
The gquantities in these equations are defined by (156)-(158),

(134) and (163). Since M and C depend only on the quantum
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numbers, the positions of the centers A and B, and the summa-
tion indices, the sums over Ba and up can be performed imme-
diately, vefore (171a) is substituted into the integral of
(l6l).

Because the left side of (17l1a) is real, the right side
is real, also. Furthermore, this is true for all values of
7 and p. It is clear from (156) that B, 1, and p are real.
Then the coefficient of each product of powers of T and p

must also be real; that is, the gquantity

% I% nggcprP)DaB,Qm

is real for each combination of « and 8.

2. Real form of the bipolar expansion

It would be possible to derive an expression for the
integral of (161) by using (164) to express it as a linear
combination of sixteen integrals over complex Gaussians, of
the type given by (144) and (159). This approach would give
an expression involving complex quantities. Since the inte-
gral of (161) contains only real quantities, it is itself
real, and it should be possible to derive a formula for it
which contains only real guantities. To accomplish this we
need only express the bipolar expansion for rlzﬂl in terms of

real functions.

First we write down the bipolar expansion of (5) and put
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it into a form with summations over only positive values of

m, and m2

1
-1 _
12 B

-y Z_ > > [<1+5mlo)(1+6m20)]‘1

+ T _ )
1M 4om, Lyr My rly ol

+ (T .+ T, _ >l
LyeRyrlpemmy o TRy, mWy il My
(172)
Here the term T is given by
2
T = (-1) Y (8.,05)Y (65,0,)
,Q,lmlzzm2 llml 1’71 zzmz 2772
'}: £,2.,m.m
1727172

The summation on L is restricted by (9), and w and M are

given by (7) and (8), respectively. The function J is defined
by (6); notice that it is real. In fact, the only complex
guantities in (173) are the three spherical harmonics. Appli-

cation of the identity (Edmonds, 1957, p. 21, Eg. 2.5.6)

* m
Y (8,¢) = (-1) Yl _m(6,¢) (174)

Lm
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to each of these spherical harmonics, followed by use of (8),

yields

*
=7 _ _ (175a)
9'1“‘1“2 2 Ly Ry rly, Iy

*
T A ) (175b)
Lyrmyrly,—my Lyr=my, 8y ,my

Then (172) can be written as

r, "t = Z Z z Z [(1+e, o) (4o 0)]'1

1“0 m =0 22—0 m., =0

x2 Re [T + T ] , (176)

Lymy 2omy Lyrmyrdymmy

where £ denotes the real part of the argument.

In order to evaluate the real part of T, we express each
spherical harmonic in terms of its real and imaginary parts,
and multiply the three expressions together. Then we make

use of

m
Rely, _ (8,0)] Ael¥, (8,6)] (177a)

il

%[X'R'_m(51¢)] ‘(‘-l)m %[Ylm(e,q))] , (177b)

which is a consequence of (174). Finally, the notation
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R,(z) = (Ra(z) = real part of z
(178)
R_(z) = Jdm(z2) = imaginary part of z
and
S (+,+ S +,=) f+1 -1
SEIAEE NPT
= \ (179a)
S+[mi(',+) S+|m](‘,‘) -1 -1
S (+,+) S (+,-) +1 +1
= |m]| -|m| o
= (-1) (179b)
S (-,+) s (-,-) -1 +1
~In] ~[m|
is introduced. The result is
2 2.2,m.m
R Ty ppn) = (- T fw T2
1717272 L 172

z Sp. (ErmIR (Y IR (Y, ’Rn(Y22|m2|" (180)

m

171

Here M is defined by (8), and the summation conditions for L
are given by (9). Notice that the value of M, and hence of
the lower limit on L, depends on the sign of m, ; my is
assumed to be nonnegative. The product en is taken to be +
if ¢ and n are the same, - if they are different. Because
amAYzo) = 0 , terms in (180) with ml=0 and €=- , or m2=0
and n=-, or M=0 and en=- must vanish.

Now, to put this in its final form, we substitute (19)

for J in (180), and put the result in (176). The function
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0QNL in (19), given by (31) and (34), is written in the fol-

lowing way:

2n.+2% 2n.+2
L

AF(Ra ,2,) = 2a) T 2y 2P

L L, o2 2,2
xR f2N+L (p raq +a, ) ’ (181)

with
£, 2,8 = a2 pme1/2) v (Le1/2,x) (182a)
L - ,~N-L-1/2 -x L+1/2

Power (¥72) = 2 (N-1) 187" Ly, (x) . (182b)

The index N is taken to be greater than zero in (182b), and
in (182a), the function y* is related to the incomplete gamma
function (Abramowitz and Stegun, 1965, Item 6.5.4). Next two

new gquantities are defined:

2,8 m.m 2.2, m.m
172™1M oM 1%2™M
wL = NL Wy , (183)
and
~ - _ L M
Y w® =R ¥ (0,0 /N , (184)

which is related to the solid spherical harmonic

Y B =" v (0,0 . (185)

The constant N. is defined by (150b). Then the real form of

L
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the bipolar expansion is

r, = D 20aws_ ) s )17t

12 .
9;' 49, 1 2

* ﬁ> * 31 ,ml,n 22,—m Pyel 1 (186)

2ymyn;domon, 1 1 21

with

© 2 0

Yy o= 3 1 3 (187)
g' 2=0 m=0 n=0

and

<R hy oo (F)/a) IR T4

(r./a)] . (188)
llml 1 2 2772

25 |m,|n
The function A is given by (26) and (15). Equations (186)-
(188) represent a further development of a result obtained by

Kinser and Ruedenberg (1971).
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3. 1Integral formula

a. Preliminary formula Now we will combine the

results of sections 1 and 2 to obtain a formula for the
desired integral. First the expression for the product of
real orbitals (i71la) is substituted twice into the integral

(161). The result is

I = BAB(pl,Tl)BCD(pz,TZ)

L
x T 1LY Ty ep T, 0, Iy 608 (189)
alblazﬁz 1717272
with
1 r y . e
I . = §av jév (g, r D .
wy 2 usB,y j 1 2 ] 211 ng') 25710 (0ge'm N
P S (5556290 (4ap ) (190)
£y m) 9g 2 -

Again we choose the origin points in the bipolar expansion to

be the points P and Q defined by (145), and the scaling param-

1 1

eters a; and a, to be t, ~ and ;Qn , respectively. Now the

1

bipolar expansion of (186)-(188) is substituted into (190).

The result contains products of two integrals of the form
,’_—f - ->

GqGBE - jév RE{Aan\br)) %I gn',l',‘m'(gr)DaBl'm' !

(191)

where



| ] = -l - [
n (2A+2,B B-2

It was shown in secti

69

)/2 (192)

on 1 that the quantity in brackets is

real, which implies that the integral G' is real. It can be
evaluated by using
= R Y2
Re(Azmn) = (Azmn + eAzmn)/ €
_ _y I
= (Almn + g(-1) Az’_m'n)/z/E ’ (193)
(135), and the fact that Gq.n vanishes when n>n' . The
result is
G, = G_,,."[D +e(-1)" D 2/ 94
mneBe n'tm oBim € a,s,g,—m]/ € (154)
provided that
220 <8 =2 2A+2B—B 2+a+2A+2B=even (1952a)
my, S W< min{g, mhi} (195b)
0 <ngn' ; (195c)

for all other values
G and D in (194) are

for 1!

of {#mn}, G' vanishes. The quantities

given by (138) and (171b). Now we have
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Logag =11 LTI Y 2taws ) s )17

1717272 llm1n122m2n2 1 2

2nl+2l 2n2+22 L

. oy L
(2/3,) (-1)

% (2/2 ;)

x (T +T )y,  (196)
byminfomyon, T4y ,my,ng .ty ,mmy,n,

with
~ 2.2

Tl m.n.%.m.n. _ 2 wL *
171127272 L

2™y c L o2 ; =2, =2
2N+L 1°p Q

X
€

I~

. st(E,n)Ran[‘yLM(R)]

L

i n

x G G -
2ominiagBie UL, Im, e B8on

(197)

The summation on L is governed by (8) and (9); the lower
limit depends on the sign of my - The other summations are
restricted by (195).

b. Reordering of sums This formula can be put into

a form which is more convenient for computation. First, the

two indices ny and n, are replaced by new indices, Ol and Oy

Gefined by
0 = 2n+42 ’ (198a)

with limits
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L <0 < 2A+£B—B . (198b)

These new indices are the exponents on (2/§P) and (Z/QQ),

respectively. Notice that, in view of (21), the subscript on

L
f2N+L
changed from

is equal to 0,70, - Next, the order of summation is

2 g to EEE ;

£ m £ m

the consequent new limits are

220 <0 < 2A+QB—B o+a+2A+2B=even (199a)

L, 2 2 <0 o+i=even (199Db)
fo

My, €M< min{%, mhi} , (199c)

2o Moo and my 5 defined by (169). At this point we

can write (196) in the form

with 2

o} g
1 l 2
I , = (2/z,) (2/z.) Y (200)
0y By, ‘231 : ‘2’2 Q' " V(ago) | (aBo)
in which
v STTTT 201 L rass, ) ass 017
(aBo) 4 (aBo)H & £ m- 0 m.,0
1'¢ 2 2@ Lom, 1 2

~

x (T + 7 ) y (201)
lelnlflzmzn2 zl,ml,nl,zz, mz,n2
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with n = {¢-2)/2 . 2All factors which depend on the orbital
exponents, except those contained in T, have been moved out-

side of the sums on llmlzzmz . The functions

-z L, 2 -2 -2 Y, >
Fo %0, (0,5 42y, )  and R [Y R,

contained in %, depend on the orbital exponents, because
R = RPQ depends on the positions of the points P and Q,
which in turn depend on the orbital exponents. We now move
the function f outsicde of the sums on lelﬁlzm2 by making the

following interchange of summations:

(202)

=01
=~
=0~
H o~
He-

¥
e~
=t~
o
o~
g3

Because the lower limit on L depends on the sign of m, the

new limits must be obtained separately for the term with +m,,

and that with —m2 . For +m2 we have:
M = -ml—m2 (203a)
mlzo+m2£o)
max 2120—02 <L g cl+02 L+cl+02=even (203b)
2220-01

\
i

9
? £l+cl=even (203c)
2

)
max § 2 L %< 27 < min
2%0 'j 1 i+o



%2250 92
max < 22 < min 22+02=even (2034)
|L-%, | L+l
(2, )
1
06 < m, < mJ.n'? My s ? (203e)
kL_m2205
%5
Moo < m, < min Myus . (203f)
‘kL--n‘._.L

For —m2 the limits on Ql anc RZ are the same as above, but

the other limits are:

M = -m,+m (203g)

mlzo_mZhi\

M2g0™M1ni |

max . By <L < ol+52 L+ol+02=even (203h)
120 2
2200791 J
m 21
max lio < my < min Ry (2031)
b ~-L .
280
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o 2
220 . .
$m, s minym, . . (2033)
ml-L
L+ml

We can take (203h) to give the overall limits on L, but we

must remember that there is no term with M=—ml-m2 if

L < ml£o+mzzo *

This interchange of summations yields, for V of (201),

- L, 2 -2 -2
v(ch)l(ch)2 B % f61+62 (p™s%p +29 )

3
7 o(-1) *
22

+ -

I3 (204)
172 172

x} (U
& )
1

with

m. (sm.,)
Upg o2 =11 20(a#8, ) (1+6_ )] -1 v t1tamy 18

172 nmm, 1 2
<1, L Steny (emR e [ Yppy ()]
A(asczm)l(k ’§AB)G(aBd£m)2(kCD’§CD) . (205)
The following notation has been adopted:
chzm iAB) = sznaBe (206)

gAB {2 % ,mB} . (207)
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The limits on my and m, are given by (203e) and (203f), M by

(203a) when s=+ ; U =0 if L<m120+m220 . The limits on my

and m, are given by (203i) and (2033), M by (203g) when s=- .
The limits on L, 21 and L, are giver by (203h), (203c) and

(203a) .

~

c. Transformation of giLM The last step is to trans-

form the function yiMﬁi) so as to separate the dependence on

orbital exponents from the dependence on the geometry of the
centers A, B, C and D. For this purpose we choose the point
M to be the midpoint of the line AB, and the point N to be the

midpoint of the line CD. Then we have

RPQ = RPM + RMN + RNQ . (208)

Two agpplications of Steinborn's (1969) result, (148)-(150),

lead to

L
g/I.JM(R'PQ) = vem Zz g)xllll(P?M) gL—)\l,M-ul(RMQ)
A.=0
177 "1

L Lo}
7 >
= 27 z z(yku(RPM)
X.=0 A.=0 ¥ 11
1 2 H1 ¥2

(209)

(RNQ) %'L-)\ —}\2 ,M-ul—uz(RMN) ’

1

where the definition of (184) has been used. The summations

on 1, and M, are restricted by



76

NN (210a)
M-u. | < Loy (210b)
lu2! < A, (210¢)
IM—ul—uzl < L=y A, . (2104)

A

Substitution of the definitions of é? and v, (184) and (l56c),

and use of the identity

. PR
Yzm(eAB’@AB) = (-1) Yﬁm(eBA'¢BA) (211)
transform (209) into
Y (k) = jé Sk b 1y P2 M. . Miapcp) (212)
v Fpg! = 1 P A, '
A,=0 A.=0
1 2
with
_ 2 2
b, = (1 Ty )R.AB/2(1+Tl )
(213)
_ 2 2
b, = (1 T, )RCD/2(1+T2 )
A L=i.=A ~
M _ _ 2 1 "2
7o, . Masep) = 2n(-1) ¢ Ry I 1Yy o (Gyprdyp)
172 TP 171
-2

1 2 1
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and

~

N m

The gquantity Y3 depends only on the geometry of the centers
ABCD; the dependence on the orbital exponents is entirely
contained in bl and b2 . Thus it is desirable to move the
sums on A, and AZ as far out as possible. Since the limits

1
depend only on L, the sums can immediately be moved outside

of those on 2 mlﬂ.zm2 , and then interchanged with that on L.

1

The new summation conditions are

I
Q
+
Q
|
>
=

SR
MAXA My "Mopg 7+ Poge™pif & 2 9340,
Lzuo“oz v 2679
L+ol+02 = even .

Combining the results of this section, we have the

mula for the integral of (161)

(21l6a)

(216b)

(216c¢c)

(2164d)

final for-
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I =Byp(py,Ty)Bopleyity) 1 1 ! 1
%1 1 1
o IS o} A A
2 2 ) 2
x] 1,°0 0,%7 38,°] b, '] b
a, 2 &, % G %2 5L 5 72
2 2 2 1 2
B L. 2 ,.2 .2 L .
xg fo +o, [o, (8, +8,7) /4] 2 (a801) | (aBOA), (217)
here the guantities
a, = 2/g; , &y = 2/;Q (218)
have been introduced, along with
A L _oa Lx._,x . ,ABCD)
(chA)l(aBGA)Z (aBoA)l(aBGA)Z AB’CD’
2y . -1
=11 (-1 ) T o20(1+6. .) (1+6_ )1
) s=* m,m m, 0 m,0
1*2 Bl )
2.8 .m. (sm.,)
1%2"1 V= LM
xw y Yy s (e, MIR__L7 (ABCD) ]
L cs: p=z (smz) £N xlxz

& € (k. R )G " (k

“C(asoim) Az’ Rap G (agotm) , ) . (219)

R
cD’“cp

The function B is defined by (156a); Py and Py by (156b), T

and 1., by (156c), with subscript 1 associated with ABP, 2 with

2
CDQ; by and b, by (213); £ by (182); w by (183); S by (179);
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7 by (214); and G by (206), (194), (138) and (171b). The
3 2

summations on al, Byr ol, ¢y 82 and 02 are governed by

(154a), (154b) and (199a), with subscript 1 associated with

A5, and 2 with CD. The summations on L, Al, Az, 21 and 22

are governed by (216), (203c) and (203d). When s=+ , the

summations on my and m., are restricted by (203e) and (203f);

2
if L < m120+m220 , the value s=+ does not occur. When s=- ,
the summations on my and m, are restricted by (203i) and
(2033) . In addition,
M= ~m, ~sm, . (220)

This formula is essentially that given by Kinser, Salmon and
Ruedenberg (1971).
It should be recalled that the formula (217) is for

unnormalized real Gaussian orbitals, defined by (162) and

(143) . All guantities contained in the formula are real.

The factors depending on the orbital exponents have been sep-
arated from those depending only on the geometry of the cen-
ters and on the guantum numbers. The latter are all con-
tained in the geometry factor A. The sums in (217) can be

evaluated efficiently by a nesting procedure.

4. Simplifications when two or more centers coincide

a. A=B In this case, the real orbital product on

the left side of (164) reduces to a product of orbitals on

the same center, A, and so does the product of complex orbi-
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tals on the right side. Furthermore, the point P of (145)
coincides with A and B. Hence, the distance RAP is zero, and
all terms in (148) vanish except those with 2=¢ . This, to-
gether with (149b), implies that the only allowed value of n
is n=m. This reasoning applies to both orbitals in the prod-

uct, so the definitions of (151b) and (153) show that
o =8 =6 =0 (221a)
m = -m -m (221Db)
for complex orbitals. 1In addition, the quantity p defined in

(156b) vanishes. Then, for the real product, the summation

conditions of (168) become

Gy =B, =0 (222a)
Lip0 € 2y < 2pHig Li*tL,ti =even (222b)
%00 = max{le—zB],llmA]-[mBil} (222c)
my o= +|my|=|my],  ~|my [+ [my]

= [my [ =[mg 1, +lmA[+lmB[, if lmAl+[mB[521 . (2224)

The conditions on Ha and ug are given by (168e), (168f) and
(170) . When the real form of the bipolar expansion,
(186)-(188) , is substituted into the integral of (l6l), we

find that only one value of ¢ is needed, namely,
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€ = sign(mA)-sign(mB) , with sign(0) = + . (223)

This is so because terms having the opposite value of ¢

include factors

27
.[ d¢ sin(m¢) cos(m'é) cos(m''e) = 0 . (224)

0
Instead of the range given by (195b), there are one or two

possible values for my

= {m n if m

m 2 ' (225)

1 120 * Mini - 1h

with

g0 T Hmy i =lmg il Thi = lmA|+|mB[ . (226)

When, in (219), s=+ , the value My = Mgy does not occur if

m.,, . > L-m When s=- , the value ml = mlzo does not

1lhi 20 °
occur if leo < ngo‘L , and ml = mlhi does not occur if

m . > L4+m

1hi 2hi - Finally, since bl = 0 , we have

=0 (227)

The integral is given by (217), along with (222a), (223),

(225) and (227). The remaining indices are restricted, as in
the case of the four-center integral, by (199%a), (216), (203c),
(203d), (203f) and (2033), if (222a), (222c), (226) and (227)

are used. Furthermore, pl=0 .
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b. A=B and C=D In this case, the Coulomb integral,

similar conditions apply to the second set of indices, also.

We have, in (217),

(228)

Also, we have (223) and an analogous expression for n in

terms of m, and my and (225) and the same expression with

C
subscript 1 replaced by 2. Moreover, when s=+ , My = Myps
does not occur 1if Mohsi > L—ml ; when s=- , m, = My, does
not occur if M6 < ml—L , and m, = My, does not occur if

m., . > L+m If all four centers coincide, we also have

2hi 1 -
L =M=0 , which implies ll = 22 and my = m, .

c. A=C In this case, no simplifications occur in
the two orbital products. However, we can simplify the
expression for %ﬁmﬂﬁpo) , (212), by taking advantage of the
fact that the point A is one of the centers in each orbital

product. Instead of using (208), we decompose ﬁPQ into only

two vectors

> > ->
RPQ = Ry, + RAQ . (229)
The result is
L
72 _ a2 2 an L=)A 97 LM,
%LM(RPQ) = 2 5," B, %A (ABAD) , (230)

where
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By = Ry,/2 ~ b, B, = R.,/2 - b, (231)
and
%LM (ABAD)
= /77 (-1 g gku(GAB’QAB)QL—A,M—u(GAD’QAD) . (232)

Then, instead of (217), we have the integral formula

o wo, P (8% ) /4] A(ch)lO(ch)zk ! (233)

and in the expression for A, (219), the quantity ¢3,A B s
172

A

replaced by ?&ALM .

d. A=B=C This case, the hybrid integral, combines

the simplifications of sections a and c. We have

Rpg = Rag - By =0 (234)

so (230) becomes simply

LI\
2 YLM(GAD’éAD) . (235)

|
o)

Y ) = 8," %M (ana)
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The integral is given by (233), with

@) = By =1 =0 (236)

and (222c), (223), (225) and (226). In (219), the definition
LM
Aq A

172
e. A=C and B=D In the case of the exchange integral,

of A, the quantity 73 is replaced by 4ﬁ0LM .

the points A, B, M, N, P and Q are all colinear. Therefore

. Lo
YinEpg) = (by=by)™ Yo (8,5,0,0) , (237)

and the integral is given by

_ . _ 1
I = BAB(Ql:Tl)BCD(szTZ) 2 Ll z pl

L
(ch)lO(ch)zo :

£ Lo Tlo%, (4 (238)

+a22)/4] A
1 "2

In the expression for A, (219), the guantity 7&1 A M is
172

replaced by Y_ (0 ) .

LM AB'QAB
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C. Discussion of Computational Methods

1. Method orf calculating integrals

In any molecular calculation using a Gaussian basis set,
it is necessary to use a number of Gaussians of each symmetry
type (s, p, etc.) to obtain reasonable accuracy. Thus one
must calculate many integrals with the same quantum numbers
and centers, but different orbital exponents. Because of
this, it is important to put the integral formula to be used
in a form which permits as nmuch of the calculation as possi-
ble to be done before the orbital exponents are specified.
The results of these preliminary calculations can then be
stored in some convenient way, and used repeatedly for dif-
ferent values of the orbital exponents.

One can easily see that (217) is an integral formula of
the desired type. The geometry factor A depends only upon
the guantum numbers, the indices, and the geometry of the
centers. Thus, for given geometry and quantum numbers, an
array of values of A for all possible combinations of the
indices can be calculated and stored in the prescribed way.

The organization of the integral calculation is shown in
Figure 2. First of all, the constant szz'mm' , defined by
(183), (150b), (7) and (8), depends only on its indices, so
it can be calculated for all desired combinations of these
indices and stored permanently. Then the first step in the

integral evaluation is to read in the stored array for w.



(i Start __:}

;7/>Get array w -///

For cach set of 2
centers AB
DO:

Calculate G for
all sets of QN's

Calculate T, p, &,
for all sets of cA'

——% Calculate P

For each sct of 2
centers CD
DO:

Calculate array %b using P

For each set of
QN's
DO:




\1/ ]

Calculate array A

using 7%, GAB’ GCD’ W

For each set of
z's DO:

Calculate array £

Calculate integral value
using A, £ and v, p, 4, b

End
all loops

L
o D

Figure 2. Flow chart of integral calculation. Triangles indicate the beginning

and end of loops

L8
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A program to calculate such an array has been written by
Hubert Kinser.

Now two of the atomic centers are defined, and an array
of the quantities é, defined by (206), (194), (138) and
(171b), are calculated for all needed quantum numbers (QN's)
and all values of the indices afcoim. This array is stored on
a disk or tape, along with another array containing the num-—
ber of a's for each set of quantum numbers kAB . Next the
quantities p, 7, &4, and b, defined by (156b), (156c), (218)
and (213), are calculated and stored for all pairs of orbital
expeonents. Kinser has written programs to calculate and store
these arrays. Now the array g, to be used in the evaluation
of 7, is calculated. These programs are called each time one
of the centers A or B is changed.

Next the other two centers, C and D, are defined, in such
a way that CD is a pair of centers which has already occurred
as AB; the quantities 8, o, T, &, b and ; will thus be avail-
able. Now that all four centers have been specified, the
quantity 7, defined by (214), or 2, defined by (232), can
be calculated and stored for all required values of its indi-
ces. (Since the dependence on the gquantum numbers is con-
tained only in the limits on the indices, one simply calcu-
lates the maximum number needed and uses them repeatedly.)
Programs to calculate this array have been written by the

author. These functions must be calculated each time any of

the four centers is changed.
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At this point the quantum numbers (QN's), kAB and kCD ’
are defined, and an array of the functions A, given by (219),
is calculated for all values of the indices, using the arrays
w, %Qy and 8. The author has written programs to perform
this calculation. It must be done each time any of the guan-
tum numbers is changed.

After the geometry factor A has been computed, the orbi-
tal exponents ¢ are defined. The functions £, defined by
(182) , are calculated for all values of the two indices; pro-
grams to do this have been written by the author. Note that
each f will occur in several terms of the summations to be
performed. Finally, the integral is calculated according to
(217) , using the stored values of p, 17, &, b, £ and A. A
program for this has been written by Kinsexr. These two steps
must be repeated each time one of the four orbital exponents
is changed.

All programs were written in Fortran IV for the IBM

360-65 using double precision arithmetic.

2. Calculation of ng

The functions under consideration are defined by (182).
There are two cases, which must be handled separately. The
first case, v =1 , is given by (182a), which is repeated

here
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£ Lo?,a) = a T7Y2 pe1/2)v* (@e1/2,0%)
= a7 b7V/2 -2L-1 112,08 (239)

The following recursion formula (Abramowitz and Stegun, 1965,

Jtem 6.5.23) will be used:
. - 2
'(L-1/2)y*(L-1/2,p0")

= (02 T(L+1/2)y* (L+1/2,0°%) + exp(-02)1/(L-1/2) . (240)

Because both terms on the right side of this formula are
always positive, there is no loss of significant figures if
the recursion is done in the direction indicated, that is,
cdownward. On the other hand, if upward recursion is used,
significant figures will be lost; the severity of the loss
depends upon the argument p2 .

In oxder to recur downward, we must have an efficient
way to calculate the function with the highest value of L
which will be needed. To develop such a method, we will use

the following series expansions (Abramowitz and Stegun, 1965,

:;; (-z)"/(a+n)n!
n=

0

I'(a)e 2 z 2" /T (a+n+1) . (241)
n=0

Item 6.5.29):

r(a)y*(a,z)
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The first series is used to obtain the expression for the

derivative
(d/dz) [T (a)y*(a,z)] = -T(a+l)y*(a+1l,2) ' (242)

which is substituted into the Taylor series expansion to give

T(L+1/2) y* (L+1/2,0°)

O

= zi)[(—l)n/n!](pz—z)n T(n+t+L+1/2)Y* (n+L+1/2,2) . (243)
n=

To use this formula, one needs to have available a table of
values of T (L+1/2)vy*(L+1/2,2z) for as many values of L as
required, and for values of z spaced closely enough so that
only a few terms are needed. It was found that with an
increment in z of 0.01, only three terms are needed to pro-
vide acceptable accuracy (at least eight significant figures).
The table is generated by calculating the function for the
largest L by means of the second series of (241), and then
recurring downward with (240); this is done for each value of
z up to some maximum value. The table is computed once and
stored permanently by the program TABGAM (Program 1 of Appen-
dix B). For very small values of p2 ( < 0.325), it is prac-
tical to use the second series of (241) to calculate the ini-
tial function for the recursion, rather than the Taylor
series (243). The initial function for downward recursion is

calculated by one of these two methods by the program GAMT@P
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(Program 3).

It is not possible to store the table of T'(a)yvy*(a,z)
for values of z up to the largest value of 92 that would ever
be needed. Therefore, some other method of calculating £
must be used for large values of 92 . If p is large enough,
and if the maximum value of L is small enough, then one can
recur upward using (240), without unacceptable loss of pre-
cision. For example, if oo > 4.0 , less than three signifi-
cant figures will be lost in an upward recursion with maxi-
mum L less than 29. The initial function needed is

(Abramowitz and Stegun, 1965, Item 6.5.16)

P(1/2)y%(1/2,0%) = /7 eri(o) /o (244)

where erf(x) is the error function (Abramowitz and Stegun,
1965, Item 7.1.1). For large values of p we can use the
asymptotic expansion (Abramowitz and Stegun, 1965, Items

7.1.2 and 7.1.23)

/7 erf (x)

v VE - lexp (~x2) /x] 2 (2m-1) 11 (-1)T/(2x%)™ . (245)

m=0

It was found that no more than four terms are required to get
fifteen significant figures, when p 2 4.8 . The calculation
of the function of (244), using (245), is done by the program

GAMLZW (Program 4).
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When ¢ = 0 , the only f's which are needed are those

A

with L = 0 ; this is because the function Z{LM(O) vanishes

for all other cases. It is obvious from (241) that
T(1/2)y*(1/2,0) = 2 . (246)

Once T(L+l/2)y*(L+l/2,p2) has been computed for each

needed L, it is multiplied by the necessary factor to get

L
fL of (239).

The second case for fvb , Vv = 2N+L , with N a positive

integer, is given by (182b), which is repeated here

Fonep (/2

= a2 (nentexp (0P TP 0% (247)

These functions are computed by means of the recursion for-

mula (Abramowitz and Stegqun, 1965, Item 22.7.12)
a _ _ a _ a
(n+1)L_,, (x) = (2nta+l X)L~ (%) (n+a)L__, (x) (248)

and the initial functions

Ly d (%) =1 and L% (x) = lta-x . (249)
This recursion scheme is stable in spite of the occurrence of

subtraction.

The possible combinations of the indices v = ol+02 and
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L are limited by (216c) and (216d4). Thus the f's form a tri-
angular matrix. However, to save both space and time, they

are stored in the computer as a singly dimensioned array, in

s . 0 1 c 0 - 2 1
the order fo ’ 1o Ey 0 £ f3 , etc. The number

f's depends on the maximum value of v and L, which is

Fh

Hh

e}

Lmax = 2A+QB+£C+2D ; (250)

we have for Nf , the number of f's,

(L__ +L)(L___+3)/4 for odd L
max max max

N_. = .

(L +2)2/4 for even L
max m

(251)

ax

The array of £'s is computed by the program FLNRH@

(Program 2). This program calls GAMT@P and GAML@W. Times

for the computation of the array fvh are given in Table 1.

3. Calculation of 2&A N LM ana ﬂkALM
= M, — = £
These functions are defined by (214), (232) and (215).

In order to obtain a form more suitable for calculation, we

substitute into (215) the definition of the spherical har-

monic to get

¥, (8,8) = ¢ P, "(8)e'™ , (252)

with

—~
I
[
~
2]
~
.
th
=]
v
o

(253)

'—l
+h
=
IA
o



Table 1.

Times for calculation of array f

Lmax Time in msec. Time in msec. Time in msec. Time in msec.
(p2=0) (0<p?<0.325) (0.325<p%<23.044) (p2>23.044)
0 0.16 0.66 0.51 0.66
1 0.35 0.66 0.66 0.82
2 0.35 0.82 0.82 0.82
3 0.35 0.82 0.82 0.82
4 0.35 1.02 1.02 1.17
5 0.35 1.17 1.17 1.17
6 0.35 1.52 1.52 1.52
7 0.51 l1.68 1.33 1.84
8 0.51 1.99 1.99 1.99
9 0.51 2.34 2.34 2.34
10 0.66 2.85 2.85 2.85
11 0.66 3.52 3.52 3.32
12 0.82 3.67 3.82 3.82

S6
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p Mo) = pzlml(cose)//75(2+m)z ; (254)

X m . . - . .
where P2 (x) is the associated Legenére function (see, e.g.,

A

(Edmonds, 1957, p. 22)). This expression for Yom is substi-

tuted into (214) three times; each term of the result con-

tains a product

exp(iuléAB)exp(iu2¢CD)exp{i(M-ul—uz)QMN]

= cos(éABCD) -+ ISln(QABCD) , (255)
where
*aBcp T M1%ap T Hofcp T MmHptmplony - (256)
Then we have
Re
A T
?%1 s LM apcp) = 27 (-1) 2 Ry 172
I 172
[ Re
) T (257)
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e ~ [pll(o )A ]1.12|(O )
T = £ € e P P
S| M1M2 My Mg MoHy-un Ay ABT A, D
~ [ M—p.-u, | cos (¢, )] - :
L-Ay=4, MN"Ygin (o )
ABCD

The limits on the summations in (257) are given by (210).
When M=0, the result simplifies somewhat. In this case

the limits of (210) become

“Himax S H1 S THipax (253a)

Hmax = min{Al . L—Al} (259b)

Fomin (F1) € 2 € Hopax (Hp) (259¢)

uzmin(ul) =.max{—A2 , —ul—L+Al+A2} (2594)

uzmax(ul) = min{+A2 , —pl+L-Al-A2} . (259e)
It is clear from the last two equations that

Homin (F1) = “Hopax (THp) . (260)
Now, defining u,' = -u, , using (260) and (253), and the
properties of the sine and cosine functions, we obtain

He Re Ae
Ez don Tuky 52' $m Tugemuyt T Hy |mdbn) TT17M2 ’

(261)
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dropping primes in the last step. Hence we can sum over only

nonnegative values of Hy - We find
G | 72, LO(ABCD)} =0 (262)
L 2
as expected, and
r 1 A L-X,-2A
fe |70,  O@Bep)| = 2m(-1) 2Ry L2
L 172 J
Himax
2
xz . T ., (263)
-t (l+0, lo) _Ull 2
Ul— le
in which the sum over o is governed by
Vomin (TH1) S Mp S Mopay (oHp) . (264)
When L = Al = AZ = 0 , we have
Re 00 1/V27
%Loo (ABCD) = . (265)
& 0

Furthermore, when either Az =0 or L = A1+A2 , the sum on

P reduces to one term; when either Al 0 or L = Al , the
sum on “l reduces to one term.

For the four-center case (A, B, C, D all different),
these results are used by the program MUSUM4 to calculate

zkk A M It calls other programs TRIG3, which calculates
172
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and stores all of the sines and cosines which will be needed,
and PLMBAR, which calculates and stores the functions ; of
(254) . These programs are given in Appendix B as Programs

5, 8 and 11, respectively. The %'s are stored as a singly
dimensioned array. The number of them depends upon the maxi-
mum value of L, Lmax , which is given by (250). Using the
fact that there are (2L+1) functions for each combination of
L, ll ’ Az (one for M=0 and two, the real and imaginary
parts, for all other M), we find for Ny the number of %'s,

= (L X+l)(Lm X+2)(Lmax+3)(3Lmax+2)/12 . (266)

N&. ma a

For example, if we have four d-orbitals the numbexr is 2145.
The three-center cases are handled by the programs
MUSUM3, TRIG2A and TRIGl, Programs 6, 9 and 10, respectively.
For the case A=B, QQOALM(AACD) is computed, using the re-

sults above. For the cise A=C, ?%ALM(ABAD) is computed.

This function was defined by (232), but, using the same rea-

soning as above, we can derive

Re
5 LM _ A Slwl
%, ~ (aBAD) = V27 (-1) €Sy By (Gap)
Hn U
~ cos (¢ )
xp. Mle ) ABADTL . (267)
sin(@ABAD)
where
QABAD = HQAB + (M—u)@AD . (268)
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Table 2. Real times for calculation of array h

L Time in sec. Time in sec. Time in sec.
max (2 centers) (3 centers) (4 centers)

0 0.001 0.009 0.002

1 0.012 0.014 0.002

2 0.005 0.036 0.012

3 0.011 0.044 0.041

4 0.010 0.135 0.104

5 0.014 0.116 0.222

6 0.017 0.169 0.423

7 0.025 0.227 0.632

8 0.030 0.467 1.053
10 2.793
12 5.613

The summation is governed by (210a) and (210b), without the
subscripts.

The two-center cases are handled by TRIGl and MUSUMZ,
Program 7. As we have seen, each of these three cases re-
duces to one spherical harmonic.

Times for computation of an array of /%'s are given in
Table 2. These are real times obtained under multiprogram-

ming, and thus represent upper bounds on the actual times.

. L
4. calculation of é(agcx)l(ascx)?_—

The geometry factor, A, contains all guantities in the

integral formula which do not depend on the orbital exponents.
The definition of A, (219), will be put into a different form

for computational efficiency. First, in view of (203c),
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2 o]
(-1) = (-1 * (269)

The order of summations is changed from

>~

=t~
M~
2o~
g~
0N

S~

.

172 172

} 1 12 1 11l to
2. &, s m, m. € n

The limits on Ql and Lo s given by (203c) and (203d), are not

changed by this procedure. Those on mq and m., become

< my < min mlhi (270a)

L+m

120
2hi

%5
M, < min<g m,, . , (270b)

A

*omin
L+m
1

with

ngo if ml < L-mZQO |
Nomin = (270¢)

maxim ml—L} if my > L—m2£o

220 '

The other conditions of (203) give restrictions on which val-
ues of s (+ and -) may occur.

Terms with ml=0, m2=0, or both assume a much simpler
form than the other terms, so they are treated separately.
It has already been shown that when ml=0, the index e can

only be + , and when m2=0, n can only be + . By using (177)
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and (179), together with the symmetry properties of the 3-]

Li%omm,

symbols contained in Wy , it can be shown that if

either m.=0 or m2=0 the terms with s=+ and s=- are equal.

1

These results are combined to give the following new

form of the formula for A, in which the indices a, B, 0, A and

L have been omitted for brevity:

A= 2(-1)

] - ~ €
+ 7 3 Gy ¥ Sum(ml)] ,
m, € 1”1 lz
with
_ N2 + Lo
Sum(0) = sz o (306, o R (777)
Lo 2
' 2.2.,0m m ~
f3 w22 cy?ye, "R (22 2
L 2.,m
m2 n 272
and
2:2,m.0 m, Lm
Sum(m)) =8 gw T oL (-1 TG, F R (A D
220 2
' 2 Rzm m
+3 1w 172712 Y S (sm.) (€M)
m, s 2

xa TR (ﬁm;M) .

(271)

(272)

(273)
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As before, M is given by (220); z. is )} without the term
m m
with m=0.

In the derivation of the orbital product, certain re-
strictions were found on the indices Ha and g (170) . The
sums over these indices are included in the function é.
Hubert Kinser (private communication on the summation condi-
tions, 1970, Iowa State University, Ames, Iowa) has shown
that these restrictions lead to additional restrictions on
the indices my and €; similar restrictions apply to m, and n.

These restrictions will be expressed with the aid of the fol-

lowing definitions:

1 if ImAl+|mB|—B < m

51 = (274a)
0 otherwise
either ImA[>[mB{ and m,<MINA
. - 1 if or |my[>[m,| and m,<MINB (274b)
2 or lmAl=lmB{ and mls(MINA.OR.MINB)
0 otherwise
either |m,|>[my| and m <MINB
. - 1 if or lmB|>[mAl and m,<MINA (274c¢)
3 ;
or [m, [=im,| and m;<(MINA.AND.MINB)
0 otherwise

MINA = min{QA-ImB{-al , Bl+ImAl—lmBl} (2744)
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MINB = min{lB—imAl+al o By—lmy [+imgl} . (274e)

A particular value of my will not occur if either

§; =6, =1 and min{im| , |[mgi{} >8; , (275a)

or

S, = 62 =0 . (275b)

In addition, the value ml=0 will not occur if eitherxr

By = 0 and 51gn(mA)-sign(mB) = - (275c¢)

or

6, =0, 85 =1, [m| = |m and sign(m,) *sign(mg) = -

3 sl

(2754)

The restrictions on ¢ are as follows:

If

I
o
~e

B1
or §, = 85 = 0 and m, ]mA]+|mBi ;

or 6, = 63 =0 and m; = l]mAI—ImBII ;

then € = sign(mA)-sign(mB) . (276a)

If 52 =1 and 63 =0

mlsMINA, £ = sign(mA)
]mA|=[mB|=ml and

and mlsMINB, £

sign(mB)

ImAI#ImB] and ml=lMMAx|, € = sign(MMAX). (276b)
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If 6, =0, 6;=1, and my = |MMIN| > O,

then € = sign(MMIN) . (276¢)

Here MMIN is whichever of My and my has the smaller absolute
value, and MMAX is whichever has the larger absolute wvalue.
We take sign(0) = + . These conditions, (275) and (276), are
taken account of by the program DEL (Program 15), which de-
cides whether a given value of m, occurs, and, if so, which
of the two values of € can occur.

There are three programs for calculating the array of
A's. GE@M4C (Program 12) performs the calculation for all
integrals having two two-center orbital products, that is,
[XAXB]XCXD] = [AB|cD], [AB|AD] and [AB|AB]. GE@M3C (Program
13) is for the integrals with a one-center orbital product
and a two-center orbital product, [AA|CD] and [AA|AD].

GE@gM2C (Program 14) is for the Coulomb integral, [aalccl,
with two one-center orbital products. These programs call
DEL, mentioned above, and J@PMG (Program 16), which determines
the subscript for the constant w. The programs incorporate
the simplifications of section IV.B.4 where appropriate.

The A's are stored as a singly dimensioned array in the
order in which they are to be used in the integral calcula-
tion. The number of functions depends upon the quantum num-
bers; maximum values are given in Table 3 for certain combi-
nations of ¢ quantum numbers. (Since the number also depends

on the m's, the number will be somewhat smaller than the fig-
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Table 3. Calculation of array A

Maximum Time Time Time
array in sec. in sec. in sec.
ZA RB lc QD size (GEgM2C) (GEgZM3C) (GEgM4C)
0 0 0 0 1 <0.02 0.02 0.012
1 0 0 O 4 <0.02 <0.02 0.02a
1 1 0 O 15 <0.02 0.02 0.03a
1 0 1 O 14 0.02 0.02 0.02a
2 0 0 0 10 <0.02 <0.02 0.0Za
1 1 1 0 48 0.02 0.12 0.07
2 1 0 o0 37 0.02 0.02 0.05
2 0 1 © 33 0.02 0.05 0.05
1 1 1 1 158 0.02 0.23 0.29
2 0 1 1 108 0.02 0.13 0.20
2 2 0 O 89 0.02 0.02 0.15
2 1 1 0O 112 0.04 0.12 0.22
2 0 2 0 74 0.02 0.04 0.10
2 2 2 2 35438 0.05 1.97 9.78

aReal time

ure given for certain combinations of m's.) Computation

times for the three programs are also given in Table 3.
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V. QUADRUPOLAR EXPANSION AND INTEGRALS

OVER SLATER-TYPE ATOMIC ORBITALS

In section II a new bipolar expansion for rlz_l was de-
rived, which contains the coordinates of the first electron
with respect to one center P and those of the second electron
with respect to another center Q. This expansion was used in
section IV to derive a formula for integrals over Gaussian
atomic orbitals. Now we will transform this bipolar expan-
sion into a "quadrupolar" expansion, containing the coordi-
nates of the first electron with respect to two centers A and
B, and those of the second electron with respect to two other
centers C and D. The transformation is based on Steinborn's
(1969) "multipolar" expansion of regular solid harmonics.

The quadrupolar expansion will then be used to obtain an
asymptotic expansion for integrals over Slater-itype atomic

orbitals.

A. Quadrupolar Expansion

. >
1. Transformation 9§.ﬂq££p/a)

The quadrupolar expansion will be derived from the bipo-
lar expansion (23) by a transformation of the guantity
Aq(;P/a) into a function of two vectors, ;A/a and ;B/a'

The definition of Aq(f) was given by (26) and (15), but we
shall now write it in a form more convenient for our present

purpose:
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Aq(%) = 92m(_f)Ln2'+l/2(r2)/2n[2(n+9,)+l]!1 ] (277)

Here zm(z) is the solid spherical harmonic defined by (185),
(2p+1)!! is given by (16), and Lna(x) is the generalized
Laguerre polynomial, which is defined by (17) and has the

explicit form (Abramowitz and Stegun, 1965, Item 22.3.9)

Lna(X) = ;E; [(-l)t/t!(n—t)l][T(n+a+l)/F(t+a+l)]xt (278)

In order to perform the transformation on A, we must

regquire P to lie on the line AB:

——

PB = eAB , PA = (1-¢)BR , 0 <es<l. (279)

No other restrictions will be imposed on the relative posi-
tions of A, B and P. The coordinates used are shown in
Figure 3. The coordinate systems on A, B and P are parallel
to each other. Note that the AB-direction does not necessar-
ily coincide with any axis. In addition to the symbols intro-
duced in Figure 3, we define RAB as the distance between the
points A and B, and we will use the ratio € of (279). The
point E denotes the position of the electron.

Consider first the Laguerre polynomial of (278). Appli-

cation of the Law of Cosines to the triangles AEB and either

AEP or BEP (see Figure 3) yields

2 2

0 N (1—s)rB2 - e(l—e)RABz ) (280)



Figure 3.

other. Spherical coordinates R

Coordinate systems on centers A, B and P. Axes are parallel to each

AB’

0

AB'

o

AB

are defined with respect to center A

60T
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Substitution of this identity into (278) [with x replaced by

(rpz/az)] and two applications of the binomial expansion
gives

t r

n
z+1/2 2 2 E [F(n+£+3/2)]
L /a )
n = o0 & Tea+3/72)

t\fx
x{(—l)r /t!(n—t)!}

Xrf\s

R 21t-r

AB ) (281)

x €5 (1-¢)T7% [a(l -€)

A rearrangement of the summations in this equation yields

Ln£+l/2(rp2/a2) 20 Z (x /a)ZS (r / )2r -2s
r=0 s=0

rf* s r-s ng 2

x (=1) . e~ (1-€) G, [a(l-e)(RAB/a) ] (282)
where

2 -1 < [»r T(n+2+3/2) 1.t

(x) = (n!) 3 z . [I‘(t+r+2+3/2)]x . (283)
t=0

Next, consider the solid spherical harmonic. Steinborn

(1969) has shown that
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z{Rm(lAgl.;P)
L
_ mu > .-> - .+
= zz Q™ Y, UaBl -z ?z-x,m-u(lpﬂ r,) ., (284)
A=0 u

where QZAmU is defined by (150) and the limits for u are
max{-A, A-2+m} £ u < min{), -A+%+m} . (285)
This leads directly to
->
‘yzm(rp/a)
2
- > > R=X q__yA my
A=0 v (286)

By substituting the three expressions (282), (286) and (185)

into (277) one obtains

> -> ->
Aq(rp/a) = Aq(e, RAB/a, rA/a, rB/a)

x (rg/a) ¥, (85,05

where
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T n -1
(272 (n+2)+1] 11}

rs

o Anz(s, RAB/a) = (—l)r(s

x Grnl[e(l-e)(RAB/a)2]€S+2—A(l—€)r—s+x (288)

and the limits on uy and the guantities ¢, Qm\mu and Grnz(x)

are given by (285), (279), (150) and (283), respectively.

. -1
2. Expansion for yo

Now the expression for Aq is substituted into the bipo-
lar expansion (23), and a gquadrupolar expansion of rlz-l is
obtained:

-1

r =) ) W (R, sy ,a,)
2 Rpg 2
1 3, 9, 9,9, PQ'71

> ->

- >
x qu(ez, RCD/az’ rcz/az, rDZ/az) (289)

with A given by (287) and (288) and W by (25), (7), (8),
(181), (182) and (22). Notice that the position of the first
electron is specified in terms of the centers A and B, and
that of the second electron in terms of C and D, but the fac-
tor W, which is independent of the electronic coordinates, is
still a function of the two points P and Q. There are four

parameters in this expansion which one is free to specify in
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some convenient way: ay and ay s the scaling parameters; and
€ and €, , which fix the positions of P and Q on the lines

AB and CD, respectively.

Since the quadrupolar expansion was obtained from the
bipolar expansion by introducing a finite expansion for each
term, the nature of the infinite series is not changed, so
the new expansion converges because the bipolar expansion

does.

B. Asymptotic Formula for Integrals over

Slater~type Atomic Orbitals

1. Asymptotic expansion

Now we will use the guadrupolar expansion to obtain a

formula for the integral

1= fav, fav, i (xgWr, t xr@x@ (290)
where

>

is a Slater-type atomic orbital on center A defined by

xg (5 = 272 3210y 7 2@ T v (6,00

(291)
The symbol g denotes the set {n,%,m}. As before, we take the

Cartesian coordinate systems on the atomic centers A, B, C,



114

and D to be parallel to each other, but none of the coordi-
nate axes is assumed to be parallel to any of the internu-
clear axes.

Substitution of either (289) (gquadrupolar expansion) or
(23) (bipolar expansion) into the integral (290) followed by

interchange of summation and integration, leads to

I g gz 3 q, (Roqray,2y) B(ay,95,9y) F(aer9prqy) -
toe (292)

The £ are overlap-type integrals defined by

(ay ag.ap) = fav, ar WAy Gp/ap) (293)
and A is given either by (287) and (288), or by (277). As
was pointed out by Silverstone and Kay (1969) and Ruedenberg
and Salmon (1969), the interchange of summation and integra-
tion is not proper in the case of Slater-type orbitals, and
the expansion of (292) is asymptotic (see, e.g. Whittaker and
Watson, (1927, Ch. VIII)). This means that it is divergent,
but the first few terms may be taken as an approximation to I.
The accuracy of the approximation is greatest when the orbi-
tal exponents are all large, or equivalently, when the inter-
nuclear distances are large. Thus the expansion may be use-
ful, especially for integrals involving relatively distant
centers. Since only a few terms would be needed in such

cases, it is expected that the method would be quite effi-
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cient. In view of this, we present here a method for evalu-
ating the terms of the expansion, (292). The results of the

previous section will be used to evaluate the functions A4

explicitly.

2. Expression for JJ in terms of overlap integrals

Since, by virtue of (287), all factors occurring in Py
have been expressed in terms of coordinates centered at A and
B, it is now possible to express $ as a sum of standard
overlap inrtegrals. To this end, we substitute (287) and

(291) into (293). The result contains products of the form

) and ¥ )Y)\H(GB'(pB)'

*
Yo m Car®a)¥y ;) m-p(€arda zBmB(eB'¢B

ala

which can be expanded by means of the formulas (Edmonds,

1957, p. €3, Eg. 4.6.5)

*
¥, (eA’¢A)Y£-A,m-u(eA’¢A)

a2
Ta 1/2
= (-1) © } [(22-2X+1) (22,+1) (2X,+1) /47]
A .
A
2= 2y Ap 2=X 2, A, &
x Yk m, + -m(eA’¢A)
arfa™H

m-u -m, m,+u-m 0 0 O
ACA (294a)
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YlB,mB(eB’¢B)YXu(OB'¢B)

u+
= (-1) & I [(2x+1) (225+1) (ZAB+1)/41r]l/2
A
B
AL A AL A
(B 5By, (8getg) . (294D
M my —u-mg 00 O B’ B
with the summation conditions
[2=A-2,] < XAy € 2=2+2, L=N+2,+A, = even (295a)
lA-zBl < Ag S ALy A+Lo+Ap = even (295b)

By virtue of these equations and of (287), the definition

(293) for JX becomes

mA+mB+u 2r+2

dlaysag) =1 1§ 10(-1) Qyy /4277
r s

Au

«] T [(22-2041) (20+1) (20,+1) (28,+1) (24,+1) (22,+1) 1H/2
A

AAB

§ =X QA AA L=A 2A AA A RB AB A QB AB

S mA+u—m 0 0 O M mg —u-my 00 O

nin_.n
A +2=A 2r=2s+A,-
x ¥ B(e,pAB)[ois el 2s+Ay-1

rsa

_AA,AB,mA+u—m,u+mB

xS
nA+25+£-l,nB+2r—2s+A !

(296)
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Pa = Ragta P = Raptp Pap = Rap/a (297)

{[2(nA+25+2-A)]![2(nB+2r—25+A)]!}1/2

—
(L]
~
©
SN
Il

1/2 p2r+2, Cnﬂ

x{(znA)z(an)z}"

r
= (—1)r( ){2“[2(n+z)+1]zz}'l
S

X{[2(nA+25+£-A)]l[2(nB+2r-2s+A)]!}l/2

x{(ZnA)!(ZnB)!}—l/2 Grn£[€(l-€)02]

X

(1-¢)

The summation limits used in (296) are given in (295), (285)

and (287). The functions Grnl(x) are defined by (283), and

0|

AR fay e (1) g (D)

denotes an overlap integral between the Slater-type atomic
orbitals of (291) defined in terms of the A and B cocordinates
shown in Figure 3. It should be recalled again that, in gen-
eral, the internuclear axis is not parallel to any of the

coordinate axes. Consequently, S is not a standard overlap
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integral.

However, since the coordinate axes on A and B are paral-
lel to each other, it is possible to express S in terms of
standard overlap integrals S by virtue of the following iden-

tity (Steinborn, 1969)

g 2t A\ & 2 A .

' = SN (CIpL Sy
no MA \-MM O\ -m m' m-m' Aym-m® TABTAB
_ 4y M+m 1/2 gt '™
(299)
where the sums are given by
0 <M < min{g, &'} (300a)
max{|2-2"], |m-m']} £ A < 9+4° 2+2'+A = even (300b)
1 _ [
The standard overlap integral Sii,M is defined as Sii,MM P

but with the condition that EA ’ ZB and §AB are all parallel

to each other. Substitution of (299) into (296) yields the

desired expression for 4 in terms of the standard overlap

integrals
n r nzn n
dlay.ag.0) = ] ] 2 2 2 ) LA CH N
r=0 s=0 >=0 A B
Lme._fL_m
a*B™A"B 2s+2—A 2r—2s+i, -1
ALAM
xg & B ) (301)

nA+Zs+£-A,nB+2r-25+A(pA'pB
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where the conditions on the summations over AA and AB are

those given by (295) and the limits on the M-summation are

0 < Mg min{AA, AB} . (302)

Moreover, the following quantities have been used in (301)

LmR . L.m. m m+m

A"B'A'B M B
F (6,9) = (-1)7(2-6,,) (-1)
Mg A MO %

x[(2A+1)<2z+1)(22A+1)(2QB+1)(2AA+1)(2xB+1)]l/2

QmZAQBmAmB Y*

x£ (6,¢) (303)
AXNA, ApM

A,mA—mB-m

Lmf L. m m 2+m 2- L+m 172
f““A B AB - 2 /
ILA/\AABM " >\"'1-l A—]J >\+]J

a B A B (304)
m-p=m, u+mB My ~Mp =T -M M 0

where the summation over up has limits given by (285), and

that over A is limited by

max{]kA-ABl, [m-mA+mB{} < A< At (305a)

AA+AB+A = even . (305b)
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3. Explicit dependence on [P and fp

Although (301) could be used as such, a more useful form
can be obtained by applying the explicit expression obtained
by Silver and Ruedenberg (1968, Egs. 23-28) for the overlap

integral, namely:

22 'm _ (o 2'+m n+l/2 n'+l/2
an! (Ppreg) = (-1) (2p,/ppteg) (2p5/p,tPg)
n+n'
XZ (0p=0g)" £, (pp/0 )z (0. +0.)" A, (nn'28'm)
A "B v "A’'"B A "B vw'
v=0 w' (306)

where the limits on the summation over w' are

0
max { [2-2'|-v( < w' < n+n'-m .

v-2-2"

The guantity fv is defined by Eg. 24 of (Silver and Rueden-

berg, 1968), and A is defined by

i g+m\ [ 2 r+m\]1/?
(22+1) (22'+1)
] v _ L+4! m m
Apgr (n'2L'm) = (-1) 2\[ 2™\ [2n\] 2n°®
B (m) m )( n) n') N
o] _(oin-wt) 1 B, (nn'22'm) . (307)
vw

2V
nin'! Al
v
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Note that A and B, defined by Egs. 29ff of (Silver and Rueden-
berg, 1968), depend only on the indices v and w' and on the
arguments nn'Le' and m. The formula of (306) differs from the

expression of Silver and Ruedenberg (1968) by the factor

1
(—l)2 M pecause our zg axis points in the direction opposite

to that of their zy axis. Insertion of (306) into (301)

yields the following result:

n,+1/2 ny+1/2
L(ay.a5:q) = (20,/p,+pg) (205/0,+05)
nin. n Ame.  A_m._m
A"B A"B A B
X 2 AN (€/ppp) FAA AM (Oprp+%ap)
A +M

: SV w'=-2r-2 B
x £,(pprpg) (pa=pgl (pptey) (-1)

x Avw,(nA+25+£—A,nB+2r—25+A,XA,AB,M) (308)
where :E denotes the summations
n r L

z= r£0 szo AZO g\A gB I\zfl \27 v«zr'
with the limits

0 g vk nA+nB+2r+z

0
max ]AA-ABI—V < w' g D, +ng+2r+L-M .

v-AA—AB
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The limits on AA' AB and M are given by (295) and (302).

Interchanging summations, one can also write

with the limits

0
max

[ (v-n,-ng-2+1)/2]

mod(v+2+lA+lB,

max |2,-25]-2-v
v-z-lA—lB
mex{0, (2-k+Mod)/2}

( |9-1-2, |

! A-lB—v-w'+Mod
max
QB—A-v—w'+Mod

- - - 1
v ZB 2—-w ' +Mod

lA-RBI
max AA—v-w'+Mod
-t -
v-w'=},+Mod

>~
(o]

s v s nA+n.B+2n+2.

]
L w' g nA+nB+2r+2

A < min{2, (2+k-Mod)/2}

A

2—1+2A

AA < min

IA

v+w'+A+ZB-Mod

A+2B
< AB £ min
v+w'+AAjMod

(309a)

(309b)
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AL, A
0 <M< mi A B (309¢)
g !
nA+nB+2r+£ W
£—A+2A+AA = even A+2B+AB = even . (3094)

The following definitions have been used:

1 for n=odd
mod (n,2) =
0 for n=even

Mod

L
mod (v+w +2+2A+£B, 2)

[x]

largest integer < x

k = v+w'+2A+2B .

Next the index w' is replaced by a new index
w = w'-2r-4% ’

which is the power of the quantity (pA+pB) in (308), and

the index s is replaced by a new index
0 = s+8—-A ’

which is the power of ¢ in (298). The last step consists

of rearranging the summations into the following order:

2°1 111

>~
>
>
B~
.
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The final result of these manipulations is the formula

nA+1/2 nB+l/2
B (aprap:) = (20,/p,%0) (205/P,+0p)
v w
v w
where the limits on v and w are given by
0 £ v < ny+n+2n+y (311a)
mod(2+lA+lB+v, 2)-2n-4%
max IRA-RBI-ZE-V—Zn S W< ny+ng . (311b)

V-EA—RB—22—2n

The function XK is discussed in the next section. Note that,
since K does not depend on the orbital exponents, only two
summations need be redone for each variation of the wave

function.

4. Expression for K
=rw

The transformations described in the preceding section

yield the following definition for K
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- nlpAnB
KVW(E'p'e'd)) = X ). E z z Eﬁr,o—£+)\,>\(€'p)
r oAx A,A M
A'B
AB+M leAzBmAmB
x (-1) Py AM (68,6)
A"B
x Avlw+2r+2(nA+20-2+A,nB+2r-20+2£—A,AA,AB,M) (312)

with the summation limits

0
[(v—nA—nB—2+l)/2]
max [—w—£+Mod+mod(v+2+£A+2B,2)]/2 £ r£n (313a)
[ zA—zB] -28-v~w+Mod] /2

[v—w-ZR—RA—2B+Mod]/2

8} . L+
max <o<smin
[—v—w—2r—2A-2B+Mod]/2 2+2r+[v+w+2A+2B-Mod]/2
(313b)
0 L
max -0 <A<min L+r-o
[-V—w-2r—2A-£B+Mod]/2 r+£+[v+w+£A+£B-Mod]/2
(313¢c)

The limits on AA, A, and M are given by (30%9a)-(309d), but

B
with w' = w+2r+{ , and Mod now denotes mod(v+w+2A+2B, 2).
The expressions of (298), (303) and (307) can now be intro-

duced for é%, F and A. If the summation on A, which occurs
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in (303), is brought outside of the summations over 21, AA’

A, and M, one obtains the final form of K

B
Ky (£7018,8) = ] (-1)F 6, M e (1-6) p%10%7**
m-+m
xz 0 (1_8)2+r-c Z (-1) B varcA
o} A
(8,9) ’ (314)

XY) 0 nem
/Mp Mg

where the limits on r and o are those given by (313a) and

(313b) and the limits on A are

<A (315a)

1A
=3

m-mA+mB|+mod(m+mA

[2,-251-2

-20
B (315b)

-2(%+xr-0)

+mB+2+2A+2B, 2)

I

~
Al = max

E-QA—ZB
v—w—2r—2—2(2A+0)+Mod

v-w—2r—2-2(2B+£+r—o)+Mod

2+2A+lB
A, = min v+w+2r+2+2(2A+o)-Mod (315c)

v+w+2r+2+2(2B+2+r—o)-Mod

£+2A+£B+A = even . (3154)
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The function Grnz(x) was introduced in (283) and the constant
T, which depends only on quantum numbers and summation indi-

ces, is defined by

(20+1) (22, +1) (22+1) (20+1) 172 L

(2n,) ! (2n5) ¢ 2% [2(n+2)+1] 1!

varoA

r A
) L1 (-1)

A lo+a-2 KAAB

A
(21A+1)(2AB+1)

2v £mL. &.m.m
ABAB
x [ (ny+ng-w) t/ Al Y (2-80) E)33 5 M
v M A"B

X / A

1/2
AA+M AB+M A AB
M M M M

(n

A+20—2+A,nB+22+2r-20-A,AA Ao M)

x Bv,w+2r+2 '’

(316)
with the limits
Al < X< Az (317a)
0
2-0
Al = max [—v—w—2r—£A—2B+Mod]/2 (317b)

[E-QA-EB-A]/Z
[[v-A|-w-2r-g-28 +Mod] /2
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L
L+r-o
AZ = min 2+[v+w+2r+£A+£B—Mod]/2 (317¢)
[A+2+2A+QB]/2
{[|v-A|+w+2r+2-Mod] /2 baL,
]SL—A-R,AI
]A—ZB]—v-w—Zr—l+Mod
Q—X—ZA
V-A—QB—w—Zr-2+Mod
max <A, <min<v+w+2r+2+i+2_-Mod
A B
]A-RBI—A
A+l+2B
A—A—QB
[|v-A|-w-2r—-2+Mod] /2 (3174d)
]A—kB] A+Ag
max [A—AAI < Ay S min Mdy
|v-2, |-w-2r-g+Mod VHwW+2r+2+) , -Mod

(317e)
0 <M< min{AA,AB,nA+nB—w}
(317£)

Also, (309d) still holds. The constant f is given by (304)
and the constants B and A are given by Egs. 29ff of (Silver

and Ruedenberg, 1968).
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5. Discussion

The final asymptotic formula for the integral of (290)
is given by (292), (310), (314), (283), (316) and (304).
This formula has several desirable features. First, it con-
tains no rotation representation matrices. Second, it makes
maximum use of the charge distribution concept, which has
proved essential for economy of computation time in diatomic
calculations. Third, only two summations need to be per-
formed in the calculation of xy for each charge distribution,
because the constants T can be calculated once for all and
stored, and the set of constants K can be calculated once for
each molecule and stored.

Since (292) is an asymptotic expansion, the series must

be truncated at values of n; and n, less than those for which

the terms begin to grow larger.
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VI. APPENDIX A: MATHEMATICAL THEOREMS

Theorem 1:

Let {fn} be a sequence of functions defined on the infi-

nite interval x 2 a such that fn(x) 2 0 for each x 2 a

and each n=1,2,+++ . If, for each b 2 a, it is known that

b b
f S f.(x) dx = S f £ (x) dx ’
n=1 a

a n=1

then we also have that

fw 2 £ (x) dx = 2 fmfn(x) ax ,
n=1 a

a n=1

provided that either side of the last equation is convergent.

Note. We can omit the hypothesis fn(x) > 0, if, in-
stead, we assume that at least one side of the last equation
is convergent when f (x) is replaced by ]fn(x)] .

(Apostol, 1957, p. 451, Theorem 14-31)

Theorem 2:

Assume that [ £ (x) = £(x) (uniformly on a < x < b),
where each fn is a real-valued function such that fn is

Riemann-integrable on a < x £ b . Then we have

(a) £ is Riemann-integrable on a < x < b .
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X 00 o0 X .
(b) f z £ (t) 4t = zf £ (t) dt (uniformly
a n=1 = n

n=1 a
on a < x £ b).

(Apostol, 1957, p. 400, Theorem 13-11)

Definition: Uniform convergence of an infinite series

Given a sequence of functions {fn} defined on a set T.

For each x in T, let

n
sn(x) = :E :ﬁ(hd (n=1,2,*°°) .
k=1

If there exists a function f such that, for every >0, there

exists an N (depending only on €) such that n > N implies
lsn(x) -fx)| <e , for every x in T,

we say the series | fn(x) converges uniformly on T and we

write

i fn (x) = £(x) (uniformly on T).
n=1

(Apostol, 1957; p. 395, Definition 13-5 and p. 393,

Definition 13-1)
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Theorem 3: Cauchy condition for uniform convergence of series

The series fn(x) converges uniformly on T if, and

only if, for every e>0 there is an N such that n > N implies
n+p
z fk (x) < 8 4
k=n+1
for each p=1,2,+++, and every x in T.

(Apostol, 1957, p. 396, Theorem 13-6)

Theorem 4: Weierstrass' M-test

Let {Mn} be a seguence of nonnegative numbers such that

0 < [f (x)] s Mo

for n=1,2,+-+, and for every x in T. Then Z fn(x) converges
uniformly on T if } M converges.

(Apostol, 1957, p. 396, Theorem 13-7)

Theorem 5:

Given a power series ) an(z-zo)n , let

A = lim sup[(lanl) (1/n);

n-—>-«

(where r = 0 if A =4+ and r = +o if A = 0). Then the

series converges absolutely if |z-z,| < r and diverges if

ol
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]z—zol > r . Furthermore, the series converges uniformly on
every closed and bounded subset interior to the circle of
convergence.

Note. If the limit

n-o n+1

exists (or if this limit is +«), its value is also equal to
the radius of convergence of the power series.

(Apostol, 1957; p. 409, Theorem 13-21 and p. 55,

Theorem 340)

Theorem 6:

If a > 0 and bn >0 for n=1,2,°+°, and if there

exist positive constants c and N such that

< >
a, cbn for n>0N ,

then convergence of |} b, ~implies convergence of ) a -

(Apostol, 1957, p. 360, Theorem 12-20)

Theoren 7:

Assume that a, > 0 and bn >0 for n=1,2,+++, and

suppose that

lim [a_/b_. ] = c > 0 .
. n’“n
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Then ) a, 6 converges if, and only if, ) bn converges.

(Apostol, 1957, p. 360, Theorem 12-21)

Theorem 8:

The series

z(s) = ZL 1/n®
n=

converges if s > 1 and diverges if s < 1 .

(Apostol, 1957, p. 363, Example 2)

Theorem 9:

If

[un+l/un| =1+ A/n + ﬁ(l/n‘?) ,

where A is independent of n, then the series Z u, is abso-

lutely convergent if A < -1 .

(Whittaker and Watson, 1927, p. 24, Corollary to 2.37)
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Vii. APPENDIX B: COMPUTER PROGRAMS

PROGRAM 1: TABGAM

c
c
C
C
c
c

OOOO

OO O0

(e EeNeNe!

TABGAM — CALCULATES TABLE GAMTAB AND STORES IT
IN A DIRECT ACCESS DATASET
GAMTAB(L 9 X)=GAMMA(L+1/2) *CAMMASTAR(L+1/2,4X)
(SEE NBS APPL.MATH.SERIES 55,SECTION 6.5)
ARGUMENTS—-LTGAM=MAXIMUM VALUE OF L=LA+LB+LC+LD

SUBROUTINE TABGAM(LTGAM}

IMPLICIT REAL*8(A~-H,0-7)

REAL*4 RSQMAX

DIMENSION GAMTAB(2272)4EXPX(2272),X(2272)
DEFINE FILE 10(45,15164UsJDISK)

IDISK=1C
LREC=758
LPMAX=NUMBER CF TERMS TO B2 USED FOR
INTERPGLATION
LPMAX=3
IMIN=LTGAM+LPMAX
LTOP=IMIN-1

J2LO=LREC+1
JZHI=2*LREC
J3LO=J2HI+1

RSQMAX=MAXIMUM VALUE CF ARG. OF GAMMA IN TABLE
DRHCSQ=INCREMENT IN ARGe. OF GAMMA BETWEEN
TABLE ENTRIES

RSQMAX=23.C44%
DRHOSQ=1.0D-02

THIS SECTICON COMPUTES TOP ROW OF TABLE (HIGHEST L VALUE)
USING SERIES (NBS APPL.MATH.SERIES 55,ITEM 6.5.29)

FACT0=1.00/(L TOP+0.5D0)
JMAX=INT(RSQMAX/SNGL(DRHOSQ))—-32
D3 118 J=1,JMAX
X{J)=(J+32)*DRHOSQ
EXPX(J)=DEXP{-X(J))

FACT=FACTO
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1CC
iic

T
(

160

2CC
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SUM=FACT

DO 1C0C I=IMIN,159Q

FACT=FACT*X(J)/(1+0.5D0)

SUM=SUM+FACT

IF((FACT/SUM).LE.1.D-10) GO TO 110
CONTINUE

GAMTAB(J}I=SUMFEXPX(J)
WRITE(IDISK*3*IMIN-2) (GAMTAB(J)sJ=1,LREC)
WRITS(IDISK*JDISK) (GAMTAB(J) 2J=J2L0yJ2HI)
WRITE(IDISK*JDISK) (GAMTAB(J)2J=33L0,2272)

HIS SECTION COMPUTES THE REST OF THE TA3LE
BY DOWNWARD RECURSION

NBS APPL.MATH.SERIES 55,ITEM 6.5.23)

DO 2C0 I=1,LTOCP
RALPH=1.0D0/(DFLOAT{(LTOP-1)+Ca5D0)
L=IMIN-I

DO 15C J=1,JMAX
GAMTAB(J)=(X(J)*CAMTAB(J)+EXPX(J) ) *RALPH
WRITEC(IDISK®*3%*L~-2) (GAMTAB(J),J=1,LREC])
WRITE(IDISK*JDISK) (GAMTAB(J) J=J2L0,J2HI)
IF(LeEQel) GU TO 16C

WRITE(IDISK®*JIDISK) (GAMTAB(J),J=J310,2272)
GO TGO 2CcC

WRITE(IDISK'JDOISK) (GAMTAB(J)4=J3L0,2272)4SQMAX,
)] LTGAM,DRHOSQ

CONTINUE

RETURN

END

PRCGRAM 2: FLNRHO

c
C
c
C
c
C
C
C
c
c
c
c
c

FLNRHOG CREATES ARRAY EFFLN(J)=EFFLN(N,L) DEFINED BY

EFFLN(O,L)=ZETFACH*{L+1/2)*GAMMA(L+1/2)
*GAMMASTAR(L+1/2,RHOSQ)

EFFLN(NsL)=ZETFACHx(N+L+1/2)*(N-1)FACTRL*EXROSQ
*¥LAGUERRE(N-1,L+1/2)

J=IN+(L+1)/2)%%2+(L+1)/2 = ((NU+1)/2)*%2+(L+1)/2
IF L=0DD
J=(N+L/2)*(N+L/2+41)+L/2+1 = (NU/2)*(NU/2+1)+L/2+1
If L=EVEN
ARGUMENTS

GAMTAB=TABLE OF GAMMA*GAMMASTAR FOR INTERPOLATIGN
(SEE NBS APPL.MATH.SERIES 55,SECTION 6.5)
LMAX=HIGHEST VALUE OF L=LA+LB+LC+LD
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JFMAX=DIMENSION CF EFFLN=(LMAX/2+1)*%*2
IF LMAX IS EVEN

(LMAX/2+1) *(LMAX/2+2)
IF LMAX IS ODD

SUBROUTINE FLNRHO(GAMTAB,LMAX,EFFLNyJFMAX)

IMPLICIT REAL*8 (A-H,0-17)

REAL*4 RSQMAX

COMMON/AF/ALPHAR(20) sRSQMAX s LTGAM» DRHOSQsAZ15AZ2,4PX1,

1 PY1,PZ1,PX2,4PY2,PZ2
ALPHAR(N)=1.0DC/(N-3.5DC)
RSQMAX=HIGHEST VALUE OF RHOSQ FOR WHICH GAMTAB

IS 7O BE USED

LTGAM=MAXIMUM VALUE OF L=LA+LB+LC+LD
DRHOSQ=INCREMENT IN ARG OF GAMTAB BETWEEN ENTRIES

DIMENSION GAMTAB(2272,3)

DIMENSION EFFLN{JFMAX)

RHOSQ= (PX1-PX2)*32+(PY1-PY2)}*%2+(PZ1-PL2)*%
ZETFAC=1.0D0/(AZIxAZ1+AZ2%AZ2)
RHCSQ=RHOSQ+*ZETFAC

RHOSQ=(DISTANCE BETWEEN POINTS Pl AND P2)%%2
DIVIDED BY (AZiF%2+AZ2%%2)

TEMPZF=DSQRT(ZETFAC)
IF(SNGL(RHOSQ).LE.1.E-15) GO 7O 409
IF(LMAX.EQ.0) GO TO 7C
EXROSQ=DEXP(—RHOSQ)

CALC GAMMA*GAMMASTAR FOR ALL L BY RECURSION
(NBS ITEM 6e5.23)

IF(SNGL{RHOSG).GT«RSQMAX) GO TO 80
DOWNWARD RECURSICN

EFFLN (JFMAX) =GAMTOP(LMAX,RHCSQ,EXRGSQsGAMTAB)
J=JFMAX

JDIF=LMAX/2+1

LMAXi=LMAX+1

D3 6C LP=1,LMAX

JNEW=J-JDIF

L=LMAX1-LP
EFFLN(JNEW)=ALPHAR (L )*=(RHDSQ*=EFFLN(J)+EXRQSQ)
J=JINEW

IF(MOD(L,2).EQ.C) JIDIF=JDIF-1

CONTINUE

GO TC 100
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IF(SNGL(RHOSQ).CT.RSQMAX) GO TC 76
IF(SNGL(RHOSQ),1LE.C.325) EXROSQ=DEXP(-RHOSQ)
EFFLN(1)=TEMPZF*GAMTOP (0,RHOSQ, EXROSQyGAMTAB)
RETURN

IF(SNGL(RHOSQ)LE.26.0) EXROSQ=DEXP(-RHOSQ)
EFFLN(1)=TEMPZF*GAMLCW(RHOSQ, EXROSQ)

RETURN
UPWARD RECURSION

EFFLN(1)=GAMLCOHW(RHCSQ, £XR0OSQ)
J=1

JDIF=1

RECIP=1.000/RHGSQ

ALPHA=C.5D0

DO 90 L=1,LMAX

JNEW=J+JD1F
EFFLN(JNEW)=RECIP*(ALPHA*EFFLN(J]-EXROSQ)
ALPHA=ALPHA+1.080

J=JINEW

IF(MOD(L,2)eEQel) JOIF=JDIF+1
CONTINUE

CALC EFFLN FOR ALL Ly N=GC,142

EFFLN(L)=TEMPZF*EFFLN(1}
TEMPZF=TEMPZF*ZETFAC
EFFIN(2)=TEMPZF*EFFLN(2)
IF(LMAX/2-1) 350,110,15C
EFFLN(3)=TEMPZF*EXRCOSQ
IF(LMAX.LT.3) GO TO 120
TEMPZF=TEMPZF*ZETFAC
EFFLN(4)=TEMPZF*EFFLN(4)
EFFLN(5)=ZETFAC*EFFLN(3)
EFFLN(6)=ZETFAC*TEMPZF*EFFLN(6])
RETURN

» EFFLN(S)=ZETFACTEMPZF=EFFLN(4)

RETURN
EFFLN(3)=TEMPZF>EXRGSQ
TEMPZF=TEMPZF=*ZETFAC
EFFLN(4)=TEMPZF=EFFLN(4)
SUMC=1.5D0-RHOSQ
SUM=SUMO

J=4

Ji=3

JDIF=2

LPMAX=LMAX-3
LMAX5=LMAX-5

80 200 LP=1,LPMAX
L=LP-1
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TEMPZF=ZETFAC*TEMPZF
J=J+JDIF
EFFLN(J)=TEMPZF*EFFLN(J)
JINEW=J-1
EFFLN(JINEW)=ZETFAC*EFFLN(J1)
J1=J1NEW

IF(MOD(L+2).EQ.Q} JDIF=JDIF+1
J2=J1+JDIF-1
EFFLN(J2)=EFFLN(J1)*SUM
IF(LMAX5~L) 200,190,:7C

CALC EFFLN FOR ALL L, N.GE.3 BY RECURSION
(LAGUERRE POLYNOMIALS)

NUMIN=6+L

N=1

J20LD=J42~-L—-4

DO 180 NU=NUMIN,LMAX,2

J2NEW=J2+NU

EFFLN(J2NEW) =ZETFAC* (((NU-4)+SUMO)Y*EFFLN(J2)-
ZETFACHNE( (N+L)+0.5DO)*EFFLN{J20LD))

N=N+1

J20LD=J2

J2=J2NEW

SUM=SUM+1.CDC

CONTINUE

J=J+JDIF

EFFLN{J)=ZETFACSTEMPZF=EFFLN(J)

EFFLN(J-1)=ZETFAC*EFFLN(J1)

RETURN

ENTRY FOR ONE-CENTER CASE

ENTRY FLMIC(LMAX,EFFLN,JFMAX)
ZETFAC=1.0DO/(AZI*AZ1+AZ2%AZ2)
TEMPZF=DSQRT(ZETFAC)

RHOSQ=0.0,S0O ONLY TERMS WITH L=C APPEAR
GAMMA(1/2)*GAMMASTAR(1/2,C.0)=2.0C

Y EFFLN(1)=TEMPZF+TEMPZF

IF(LMAX.EQ.C) RETURN
D0 41C J=2,JFMAX

> EFFLN(J)=C.CDO

IF(LMAX.EQel) RETURN
TEMPZF=TEMPZF*ZETFAC
EFFLN(3)=TEMPZF
IF(LMAX.LE«3) RETURN
TEMPZF=TEMPZF=ZETFAC
EFFLN{7)=TEMPZF*1.5DC
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IF(LMAX.LE«.S5) RETURN

c
c CALC EFFLM FGR L=0y N.GE.3 BY RECURSION
c (LAGUERRE POLYNOMIALS)
c
Jz2=7
N=1
J20LD=3

D3 480 NU=64,LMAX,2

J2NEW=J2+NU

EFFLN(J2NEW)=ZETFACH(( (NU~4)+1.5DC)XEFFLN{(J2)

1 —ZETFACKNF(N+C.SDC)FEFFLN{J20LD))

N=N+1

J20Lb=J2
487 J2=J2NEW

RETURN

END

PRCGRAM 3: GAMTOP

GAMTIP=GAMMA(LMAX+C.5)*INC.GAMMASTAR(LMAX+0.5,RHOSQ)
COMPUTED 8Y TAYLCR SERIES USING A GRID

ASSUMES GAMTAB IS ALREADY IN CORE
GAMTAB=TABLE CF SAMMA*GAMMASTAR FOR INTERPOLATICN

CAMTAB(L 4 X)=GAMMA{L+1/2)*GCAMMASTAR(L+1/2,4X)
(SEE NBS APPL.MATH.SERIES 55,SECTION 6.5)
EXROSQ=DEXP(-RHOSQ)

OOOOOOON

FUNCTION GAMTGP(LMAX,RHOSQ,SXROSQsGAMTAB)
IMPLICIT REAL*8(A-H,0-Z)

REAL*4 RSQMAX

REAL*4 FJ

ALPHAR(L)=1.022/(L-3.5DC)
RSQMAX=HIGHEST VALUF ©F RHOSQ FOR WHICH GAMTAB
‘ IS TO BE USED
LTGAM=MAXIMUM VALUE GF L=LA+LBE+LC+LD
DRHOSQ=INCREMENT IN ARG OF GAMTAB BETWEEN ENTRIES

OO0

COMMCN/AF/ALPHAR (20) yRSQMAX, LTGAM, DRHOSQ
DIMENSION GAMTAB(2272,3)
IF(SNGL{RHOSQ).LE.C.325) GO TO 350

CALC GAMTCP BY TAYLCR SERIES USING GAMTAB

OO

27 FJI=SNGL(RHGSQ)/SNGL {DRHOSQ)
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J=FJ
FLOATJ=J
J=J-32
DELTA=RHOSQ-FLOATJI*DRHOSQ
IF((FJ-SNGL(FLOATJ)).LE.C.5) GO TO 30
J=J+1
DELTA=DELTA-DRHOSQ

30 CONTINUE
SUM=GAMTAB(J,1)-DELTA*(GAMTAB(J,2)

1 ~DELTA*0.5D0%5AMTAB(J53))
220 GAMTCP=SUM
RETURN
c
c CALC GAMTOP FOR SMALL RHOSQ BY SERIES(NBS ITEM 6.5.29)
c
25C IF(LMAX.LT.5) GC 7O 34¢C
SUM=1.090
GO TG 280

36C IF(LMAX.LT.2) GO 70O 370

SUM=1.DC+RHOSQ*ALPHAR(LMAX+6)

GG TC 380
27C SUM=1.DO+RHOSQ*ALPHAR(LMAX+5)% (1. D0+RHOSQO*
ALPHAR(LMAX+7))
380 SUM=ALPHAR(LMAX+1)%(1.D0+RHOSQ*ALPHAR(LMAX+2)

3 ¥(1.DO+RHOSQ*ALPHAR (LMAX+3) % (1, DB3+RHOSQFALPHAR(

2 LMAX+4)%(1.D0+RHOSQ*ALPHAR (LMAX+5)*SUM)) ) )

GAMTCP=2XROSQ*SUM

RETURN

END

=4

PRCGRAM 4: GAMLOGW

CAMLOW=GAMMA(Q.5)FINC.GAMMASTAR{0.5,RHOSQ)
=SQRT(PI}*ERF(RHD)/RHD

(SEE NBS APPL.MATH.SERIES ITEM 6.5.16)

RHG=SQRT (RHOSQ)
ERF CALCULATED BY ASYMPTOTIC EXPANSION
(NBS APPLeMATHWLSERIES 7.1.23)
VALID FOR 4.84.LE.RHO (23.04.LE.RHOSQ)
EXROSQ=DEXP (-RHOSQ)

slelsEeNeNeoNeNeNe)

FUNCTION GAMLOW(RHOSQ,EXROSQ)
IMPLICIT REAL#*8(A-Hy0-R,T-2)
EQUIVALENCE{RHG, TERM1)
RHO=DSQRT(RHOSQ)

SNGRHO=SNGL (RHQ)
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TERM1=1.7724538509C5516/RH0
IF(SNGRHO.LT.6.CG)} GO TO 20
GAMLCW=TERMZ
RETURN
SRECIP=1.0/SNGL(RHOSQ)
IF(SNGRHO.LT.5.2) GO TO 50
IF(SNGRHO.LE.5.5) GO TO 30
SSUM=1.0
50 70 160
30 SSUM=1.0-0.5%SRECIP
G8 7O 100
5C SFACTR=0.5%*SRECIP
IF(SNGRHO.LT.5.0) GO TO &C
SSUM=1,0-SFACTR*(140—-3.,C*SFACTR)
GO TO 1¢C
60 SSUM=1.0-SFACTR*(1.0-3.0xSFACTR*{1.0-5,0%SFACTR))
1CC GAMLCW=TERM1-SNGL(EXROSQ)*SRECIP*SSUM
RETURN
END

N
O
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PROGRAM S5: MUSUM4

c
c
c
c
C
c
c
c
c
c
c
c

2 Xaks

OO0

MUSUM4 - CALCULATES ARRAY SUMM AND PUTS IT IN CORE

SUMM DEPENDS ONLY ON THE LOCATION GOF THE NUCLEI,

NOT ON ORB. EXP'S

SUMM(J)=SUMM(M,L ,LAMBD2,LAMBDL) .

CALC INVOLVES SUMS ON MUl AND MU2 IN STEINBORNS
FORMULA FOR A SOLID SPHERICAL HARMONIC OF ONE
VECTOR IN TERMS OF THGOSE FOR THREE VECTORS

ARGUMENTS — NCENTR INDICATES WHICH NUCLEI CORRESPOND

TO ABCD
LMAX = MAX VALUE OF L,LAMBD1,LAMBDZ2
PAB,PHIAB REFER TO AB, PCD,PHICD REFER TO CD

SUBROUTINE MUABCD(SUMM,NCENTR,LMAX,PAByPHIABsPCDy
1 PHICD)
IMPLICIT REAL*8(A-H,0-Z7)
COMMON/NUCLEI/CENTER(3,94) ,CHRG(4) ,LHI(4)
COMMON/YS/RECIP(24)yRRT2PI, PMN(45) 4 PHIMN,COS00(4},
1 C0S0(26),COSM(386) , SINM(386)

DIMENSION PAB(45),PCD{(45)

DIMENSICN RMIDPT(3),NCENTR{4)sPOWER(8)

DIMENSION SUMM(1)

DATA TWOPI/6.283185307179586/,RT2P1/2.506628274631001/
SUMM{1)=RRT2PI

IF(LMAX.EQ. Q) RETURN

LMAX1=LMAX+1

FIND COORDS OF VECTOR BETWEEN MIDPOINTS OF RAB AND RCD

RMN=0.0DO
DO 20 I=1,3
RMIDPT(1)=0,5D0*(CENTER(I4NCENTR(3) )+
1 CENTER(I,NCENTR(4))-CENTER(I4NCENTR(1))
2 —CENTER(I4NCENTR(2)))
2C RMN=RMN+RMIDBPT(I)*RMIDPT(I)
RMN=DSQRT(RMN)
JP=1
IF(ABS{SNGL{RMIDPT{3)))«NE.SNGL{RMN)}} GO TO 200

TRIG2 CALCULATES AND STORES SINE AND COSINE OF ANG
FOR ALL M,MUl

ANG=MU1*PHIAB+(M-MU1)*PHICD FOR CASE MU2=M-MU1i,

PHIMN UNDEFINED

CALL TRIGZ2(LMAX,LMAXD2,PHIAB,PHICD)
IF(SNGL(RMN).NE.C.0) GO TO 100
ASSIGN 320 TG KMO

ASSIGN 395 TO KM
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GO 70 2i¢

10C IFC(SNGL(RMIDPT{3)).LT.0.Q) GO TO 105
ASSIGN 120 70 KZ
GO TO 110

105 ASSIGN 115 TO KZ

CALCULATE PMN(L,0) FOR CASE COSTH=1 OR -1

OO0

11C PMN(1)=RRT2PI
JoLp=1
DO 130 L=1,LMAX
J=JOLD+L
GO TO KZ,(115,120)
115 PMN(J)=-RECIP(L)=PMN(JOLD)

G0 TO 130
120 PMN(J)= RECIP(L)*PNN{(JOLD)
13C JCOLD=J

ASSIGN 345 TG K1
ASSIGN 405 T3 K2
GO TO 205
20C ASSIGN 355 70 Ki
ASSIGN 450 TO K2
PHIMN=DATANZ (RMIDPT(2),RMIDPT(1))
COSTH=RMIDPT(3)/RMN

PLMBAR CALCULATES PMN(L,M) FOR GENERAL CASE
CALL PLMBAR(COSTHyLMAX,PMN)

TRIG3 CALCULATES AND STORES SINE AND COSINE OF ANG
FOR ALL MsMULI,MU2

ANG=MU1*PHIAB+MU2*PHICD+(M-MU1I-MU2) *PHIMN

QOO0 OO0

CALL TRIG3(LMAX,LMAXD2,PHIAB,PHICD)

205 ASSIGN 335 7O KPOW
ASSIGN 330 TO KMO
ASSIGN 400 TO KM
POWER{1)=RMN

21C ASSIGN 300 TO KLMIN
JTO=LMAXD2+1
JADDO=2%JTO
DO 600 LAM1=1,LMAX1
LAMBDI=LAMi-1
JLI=LAMBDi1*LAM1/2+1
RPC=-1,0DC
LAMZ2MX=LMAX1-L AMBD1
DG 595 LAM2=3,LAMZMX
LAMBD2=LAM2-1
LAMSUM=LAMBD1+LAMBD2
RPC=-RPC

C RPC=(-1)**LAMBD2
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JL2=LAMBD2*LAM2/2+1
GO TO KLMIN,(220,300,215)
2ND TIME THRU LGOP ON L, POWER WAS CALCD 1ST TIME,
NEXT STMT PREVENTS RECALCULATION
215 ASSIGN 340 7O KPOW
ASSIGN 220 TO KLMIN
2ND AND SUBSEQUENT TIMES THRU LOOP ON L -
CALC SUMM FOR L=LAMSUM. THIS IS SKIPPED FOR LAMSUM = 0
BECAUSE THAT CASE, SUMM(1), HAS BEEN DONE
220 CONST=DSIGN(RT2PI,RPC)
JM=JP
JP=JP+L AMSUM+1

TMO=PAB(JL1}*PCD(JL2)
MUIMAX=MINO(LAMBD1,LAMBD2)

IF(MUIMAX.EQ.Q) GO TO 242

SuMP=0, 0DO

ASSIGN 235 TO KMMOD

JTRIG=JTO

D0 240 MUl=1,MU1MAX

IF(MUi.NE.1) JTRIG=JTRIG+JADDO-MUL
TERM=PAB(JL1+MUL}*PCD(JL2+MUL)*COSO(JTRIG)
GO TO KMMOD, (23G,235)

MUl IS EVEN

230 SUMP=SUMP+TERM
ASSIGN 235 TG KMMGD
GO TO 240

MU1 IS GDD

235 SUMP=SUMP-TERM
ASSIGN 230 TO KMMQOD

24C CONTINUE
SUMM(JP)=CONST*{(TMC+2. ODO*SUMP)
GO TO 244

242 SUMM(JP)=CONST*TMO

ALL M NOT O
244 SIGNM=1,0D0
JTM=0
DO 270 M=1,LAMSUM
JM=JM+1
JP=JP+1
MUIMAX=MINO( LAMBD1,M+LAMBD2)
MUIMIN=MAXO(-LAMBD1,M-LAMBD2) -
SIGNM=(-1)=*
SIGNM=—SIGNM
LMAXMM=L MAX-M
MDIF2=LMAXMM/2
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LMAXP=LMAX1-MOD(LMAXMM,2)
JTRIG=JTM+MDIF2*L MAXP-MDIF2*(MDIF2-1)/2+1
IF(MUIMIN.GT.GC) GO TO 250
JTRIGP=JTRIG+M
TMO=PAB(JL1)*PCD(JL2+M) *SIGNM
SUMP=TMO*COSM(JTRIGP)
SUMN=TMCO*SINM(JTRIGP)
IF(MUIMIN.LT.0) GG TQ 260
IF(MUIMAX.EQ.Q) GO TO 2589
MUIMIN=1
GO TO 251
250 SuUMP=0.0DC
SUMN=G.(CDO
251 SIGN=SIGNM
252 DO 258 MUl=MUIMIN,MUIMAX
MMMU1=M-MU1
IF(MMMU1.LT.C) SIGN=-SIGN
SIGN=EPSILON{MUL)*EPSILON(M-MU1l)
TMO=SIGN*PAB(JLI+MUL)=PCD(JL2+IABS{MMMUL))
JTRIGP=JTRIGH+MUI 3LMAXP-MU1*(MU1-1)/2+MMMU1
SUMP=SUMP+TMO=COSM(ITRIGP)
258 SUMN=SUMN+TMO*SINM(JTRIGP)
259 SUMM(JP)=CONST*SUMP
SUMM(JM)=CONST*SUMN
IF(MeNEJLAMSUM) JTM=LMAXP=LMAXP
1 ~((LMAXP+1)*(LMAXP-1)+M*%M) /4+JTM
GO 70 270
260 MUIMIN=-MUIMIN
SIGN2=SIGNM
SIGN=SIGNM
DO 265 MU1=1,MUIMIN
SIGN2=(-1)*=(M-MU1)
SIGN2=-SIGN2
MPMU1=M+MU1
MMMU1=M~-MU1
IF(MMMUL1,LT«C) SIGN=-SIGN
SIGN=EPSILON(MU1l)ZEPSTILON({(M-MU1)
TMO=SIGN*PCD(JL2+IABS{MMMUL1))
TM1=SIGN2*PCD(JL2+MPMUL)
JTERM=MU1*LMAXP-MU1%x{MU1-1)/2
JTRIGP=JTRIG+JITERM+MMMU1
JTRIGM=JTRIG-JTERM+MPMU1
J=JL1+MU1
SUMP=SUMP+PAB(J) *(TMO*COSM(JTRIGP)+TM1*COSM(JTRIGM))
265 SUMN=SUMN+PAB(J)*(TMO*SINM(JTRIGP)+TM1*SINM(JTRIGM))
IF(MUIMIN.EQ.MUIMAX) GO TO 259
MU1 MIN=MUIMIN+1
GO TO 252
270 CONTINUE
G0 TO 310
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1ST TIME THRU LGOP ON L
3C0 ASSIGN 215 TO KLMIN
310 IF(LAMSUM.EQ.LMAX) GG TO 600

ALL L.G7oLAMSUM
L MIN=LAMSUM+]
CONSTA=DSIGN(TWOPI4RPC)
DO 590 L=LMIN,LMAX
JM=4P
JP=JP+L+1
GO T0O KMO, (326,336}
RMN=0
32G SUMM{JP)=0.0D0
GO TO 390
RMN<NE.C
330 GO TO KPOW,(3354340)
235 IF(LeNEel) POWER(L}=RMN*POWER(L-1)
34C LAMBD3=L-LAMSUM
LMLI=L-LAMBD1
JL3=LAMBD3*¥(LAMBD3+1)/2+1
CONST=CONSTA*POWER(LAMBD3)
M=0
SUMP=0.0D0
SIGN=1.0DC
GO TGO Kis(345,355)
COSTH=1 OR -1
345 TMO=PAB(JL1)*PCD(JL2)
MUIMAX=MINO(LAMBD1,LAMBD2)
IF(MUIMAX.EQeQ0) GO TO 352
JTRIG=JTO
DO 350 MUl=1,MU1MAX
SIGN=(~-1)**MUl
SIGN=-SIGN '
IF(MULIeNEe1) JTRIG=JTRIGH+JADDO-MUL
356 SUMP=SUMP+SIGN*PAB(JLI+MUL)*PCD(JL2+MUL)*COSO(JTRIG)
352 SUMM(JP)=CONST*PMN(JL3)}*(TMO+2.0D0*SUMP)
G0 TO 390

GENERAL VALUE OF COSTH
355 TMC=PCD(JL2)*PMN(JL3)
MUIMAX=MINO(LAMBD1,LML1)
MU2MAX=MING(LAMBD2,LAMBD3}
IF(MU2MAX.EQ.C) GO TO 361
DO 360 MU2=1,MUZMAX
SIGN=(~-1)=%MU2
SIGN=~SIGN
360 SUMP=SUMP+SIGN*PCD(JL2+MU2)=PMN(JL3+MU2)%COS00(MU2)
361 TMO=PAB(JL1)*(TMC+2.0D0*SUMP)
SUMP=0. CDO
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IF(MUIMAX.EQ.C) GO TC 385
LMAXP=LMAX1-MOD{LMAX,2)
SIGN=1.CDC
DO 380 MUl=1,MU1MAX
C SIGN=(-1}**MU1
SIGN=-SIGN
JTRIG=JTO+(MU1-1)*LMAXP-MUL*(MULI+1)/2
MUZ2MAX=MINO( LAMBD2,MU1+LAMBD3)
MUZ2MIN=MAXG(-LAMBD2,MU1~LAMBD3)
IF(MUZMIN.GT.0) GO TO 364
SUM2=SIGN*PCD(JL2)*PMN( JL3+MU1)*COSCG(JITRIG)
IF(MUZ2MIN.LT.C) GO TO 37C
IF(MU2MAX.EQ.Q) GO TO 368
MUZMIN=1
GO TO 365
364 SUM2=0.CDC
365 SIGN2=SIGN
D0 367 MUZ2=MUZ2MIN,MUZMAX
MIMM2=MU1-MU2
IF{MIMM2.LT. Q) SIGN2=-SIGN2
C SIGN2=EPSILON(MU1)=*EPSILON(MU1-MU2)
367 SUM2= SUM2+SIGN2*PCD(JL2+MU2)*PMN(JL3+IABS(M1HH2))
1 *COSC{JTRIG+MU2)
368 SUMP=SUMP+PAB(JLI+MU1)*SUM2
GO TG 380
37C MU2MIN=-MU2MIN
SIGN1=SIGN
SIGN2=SIGN
DO 375 MU2=1,MUZMIN
M1PM2=MU1+MU2
MiIMM2=MU1I-MU2
SIGN1=—SIGN1
C SIGNI=(-1)=*(MUi+MU2)
IF(MIMM2,LT.0) SIGN2=-SIGN2
C SIGN2=EPSILON(MU1)*EPSILON{MUI-MU2)
375 SUM2=SUM2+PCD(JL2+MU2) *(SIGNIFPMN(JL3+M1PM2)
i *COSO(JTRIG-MU2) +SIGN2*PMN(JL3+IABS(M1MM2))
2 *COSO(JTRIG+MUZ2))
IF(MUZ2MIN.EQ.MU2MAX) GO TO 368
MU2MIN=MU2MIN+1
GO TO 365
38C CONTINUE
385 SUMM(JP)=CONST*(TMC+2,0D0*SUMP) :

C ALL M.GT.0
390 SIGNM=1.,0D0
JTM=0
DO 580 M=1,L
JM=JM+1
JP=JP+1
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GO TO KMs(395,400)

RMN=0

395

SUMM(JM)=0.000
SUMM(JP)=0.0D0
GO TO 58C

RMN,NE.O

4C0

LMAXMM=LMAX-M

MDIF2=LMAXMM/2

LMAXP=LMAX1-MOD(LMAXMM,2)
JTRIG=JTM+MDIF2*LMAXP-MDIF2%(MDIF2-1)/2+1

SIGNM=(-1}) *¥M

SIGNM=-SIGNM
GO TO K25(405,450)

COSTH= 1 OR -1

405

410

415

42C
422

MUIMAX=MINO( LAMBD1,M+LAMBDZ2)
MUIMIN=MAXO(-LAMBOD1 , M-LAMBD2) .
IF(MUIMIN.LE. MUL1MAX) GO 7O 410
SUMM(JP)=04GDC
SUMM{JM)=0.0D0

GO TO 575

IF(MULMIN.GT.0) GO 7O 415
JTRIGP=JTRIG+M
TMO=SIGNM*PAB(JL1)*PCD(JL2+M)
SUMP=TMO0*COSM(JTRIGP)
SUMN=TMO*SINM(JTRIGP])
IF(MUIMING.LT«C) GO TO 435
IF(MUIMAX.EQ.0) GO TO 432
MUIMIN=1

60 70 420

SUMP=0.0DO

SUMN=0.0DO

SIGN=SIGNM

DO 430 MUI=MUIMIN,MUIMAX
MMMU1=M-MU1

IF(MMMULLTe.C) SIGN=-SIGN

SIGN=EPSILON(MU1)*EPSILON(M-MU1)

424

43C
432

435

TMO=SIGN*PAB (JL1+MU1)*PCD(JL2+IABS(MMMUL)) .
JTRIGP=JTRIGHMUL XL MAXP-MULX (MU1-1)/2+MMMUL
SUMP=SUMP+TMOX*COSM(JTRIGP)
SUMN=SUMN+TMO*SINM(JTRIGP)
TMO=CONST*PMN(JL3)

SUMM(JP) =TMO*SUMP

SUMM(JM)=TMO*SUMN

GO T0O 575

MUIMIN=-MUIMIN

SIGN2=SIGNM

SIGN=SIGNM

D0 445 MUl=1,MUIMIN
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C SIGN2=(-1)**(M-MUL}
SIGN2=-SIGN2
MPMUI=M+MU1
MMMU1=M-MU1
IF(MMMUl.LTo0) SIGN=-SIGN
C SIGN=EPSILON(MUL)*EPSILON(M-MU1) .

438 TMO=SIGN*PCD(JL2+IABS(MMMU1))
TML=SIGN2*PCD(JL2+MPMUL)
JTERM=MU1*LMAXP-MUl*(MU1-1)/2
JTRIGP=JTRIG+JTERM+MMMUL
JTRIGM=JTRIG-JTERM+MPMU1
J=JL1+MU1
SUMP=SUMP+PAB (J) *(TMO*COSM(JITRIGP)+TM1I*COSM(JTRIGM) )

445 SUMN=SUMN+PAB(J)*(TMO*SINM(JTRIGP}+TMLI*SINM(JITRIGH))
IF(MUIMIN.EQ.MUIMAX) GO TO 432
MULIMIN=MUIMIN+1
GO TO 422

C GENERAL VALUE OF COSTH
450 SIGN1=1.0D0
MUIMAX=MINO( LAMBDi,M+LML1)
MUIMIN=MAXO(-LAMBD1,M~LMLY)
IF(MULMIN.GT.0} GO TO 468

C MU1=0 FROM HERE 7O STMNT 468

MULOW=1

456 MU2MIN=MAXC(-LAMBD2,M~-LAMBD3)
MUZ2MAX=MINC( LAMBDZ,M+LAMBD3)
IF(MU2MIN.GT.0) GO TO 458
TMO=SIGNM*PCD(JL2) *PMN(JL3+M)
SUM1=TMO*COSM(JTRIG)
SUMZ=TMCO*SINM(JTRIG)
IF(MU2MIN.LT.0) GO TO 464
IF(MU2MAX.EQ.Q) GO TO 463
MUZMIN=1
GO TO 459

458 SUM1=0.CDO
SUM2=C.0D0

459 SIGN=SIGNM

460 DO 462 MU2=MUZMIN,MUZMAX
MMMUZ2=M-MU2

C SIGN=EPSILON(MU2)*EPSILON(M-MU2)

IF(MMMU2.LT.0) SIGN==SIGN

461 TMO=SIGN*PCO(JL2+MUZ2)+PMN(JL3+IABS (MMMU2))
JTRIGP=JTRIG+MU2
SUM1=SUM1+TMO*COSM{JITRIGP)

462 SUM2=SUM2+TMO*SINM(JITRIGP)

463 SUMP=PAB(JL1)*SUM1
SUMN=PAB (JL1)*SUM2
IF(MUIMIN.LT.0Q) GC TO 560
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IF(MUIMAX.EQ.0) GG TO 570
GO TO 469
464 MUZ2MIN=-MU2ZMIN

SIGN2=SIGNM
SIGN=SIGNM
DG 467 MU2=1,MU2MIN

C SIGN2=(-=1)**(M-MU2)
SIGN2=-SIGN2
MPMU2=M+MU2
MMMU2=M-MU2

C SIGN=EPSILON(MU2)*EPSILON(M-MU2)
IF(MMMU2.LT. Q) SIGN=-SIGN
TMO=SIGN2*PMN (JL3+MPMU2)
TM1=SIGN*PMN(JL3+IABS(MMMU2))
J=JL2+MU2
JTRIGP=JTRIG+MU2
JTRIGM=JTRIG-MU2
SUM1=SUM1+PCD{J)*{TMC*COSM{(JTRIGM) +TM1*COSM(JTRIGP))

467 SUM2=SUM2+PCD(J)*(TMO*SINM(JTRIGM) +TML*SINM(JTRIGP))

IF(MUZMIN. EQ.MU2ZMAX) GO TO 463
MU2MIN=MU2MIN+1
GO TO 460

468 SUMP=0,CDO
SUMN=5.0D0
SIGNMI=SIGNM
MUL OW=MU1MIN

469 MUHI =MU1MAX
IND=1

465 DO 550 MUI=MULOW,MUHI
JTERM=MU1*L MAXP-MU1i*(MU1-1)/2
SIGN1I=-SIGN1

SIGNI=({-1)**MUl

OO0

SUMS OVER MU2 FOR +MUl
JTERM3=JTRIG+JTERM
MMMUI=M-MU1
MU2MAX=MINO( LAMBD2,MMMUI+LAMBD3)
MU2MIN=MAXO(~LAMBD2, MMMU1~LAMBD3)}
IF(MMMU1) 483,470,472

470 TMO=SIGNM*PCD(JL2)*PMN{JL3)
SUM1=TMC*COSM(JTERM3)
SUM2=TMO*SINM(JTERM3)
IF(MUZMAX.EQe0) GO TO 495
SIGN=SIGNM
DO 471 MU2=1,MU2MAX

C SIGN=(-1)*%=(M-MU2)

SIGN=~-SIGN

TMO=SIGN*PCD(JL2+MU2)*PMN(JL3+MU2)

JTRIGP=JTERM3+MU2
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JTRIGM=JTERM3-MU2
SUM1=SUM1+TMO*(COSM(JTRIGP )+COSM(JTRIGM) )
SUM2=SUM2+TMO*{SINM(JTRIGP J+SINM(JTRIGM) )
GG TO 495

IF(MU2MIN.GT.Q) GO TO 474

TMO=SIGNM*PCD(JL2) *PMN(JL3+MMMUL) .
SUM1=TMO*COSM(JTERM3)

SUM2=TMO*SINM(JTERM3)

IF(MU2MIN.LT.0) GO TO 479

IF(MU2MAX.EQ-0) GO TO 4S5

MU2MIN=1

GG 10 475

SUM1=0.,0DC

SUM2=0.0DO

SIGN=SIGNM

DO 478 MU2=MUZMIN,MU2MAX

MMM12=MMMU1-MU2

IF(MMM12.LT.0) SIGN=-SIGN

C SIGN=EPSILON(MU1l)*EPSILON(MU2)=*EPSILON(M-MU1-MU2)

478

479

JTRIGP=JTERM3+MU2 .
TMO=SIGN*PCD(JL2+MU2)*PMN(JL3+IABS(MMM12)}}
SUM1=SUMI+TMO*COSM(JTRIGP)
SUM2=SUM2+TMO*SINM(JTRIGP)

GO TO 495

MU2MI N=—MUZMIN

SIGN =SIGNM

SIGN2=SIGNM

D0 482 MU2=1i,MUZMIN

MM1P2=MMMU1+NMU2

MMM12=MMMU1-MU2

IF{MMM12.LT.0) SIGN=-SIGN

C SIGN=EPSILCN(MUL)*EPSILON(MU2)*EPSILON(M-MU1-MUZ])
C SIGN2=(-1)**(M-MU2)

482

483

SIGN2=-SIGN2

JTRIGP=JTERM3+MU2

JTRIGM=JTERM3-MU2

TMO=SIGN2¥PMN(JL3+MM1P2)
TMI=SIGN=PMN(JL3+IABS(MMM12))

J=JL2+MU2

SUM1=SUM1+PCD(J)*(TMO*COSM(JTRIGM) +TM1*COSM(JTRIGP))
SUM2=SUM2+PCD(J) *( TMOFSINM(JTRIGM)+TMIXSINM(JTRIGP))
IF(MUZ2MIN.EQ.MU2MAX) GO TO 485

MU2MIN=MUZMIN+1

GO T0 476

MU2MIN=-MU2MIN

SIGN=SIGN1

IF(MU2MAX.LT.0) GO TO 485
TMO=SIGN1*PCD(JL2)*PMN(JL3-MMMU1)
SUMI=TMO*COSM(JTERM3)

SUM2=TMO*SINM(JTERM3)



485

486

153

IF(MU2MAX.GT.0) GO TO 488
IF(MU2MIN.EQ.Q] GO TO 495
MU2MAX=1

GO TO 486

SUM1=C.0DC

SUM2=0.G0DO
MU2MAX=~MU2MAX

DO 487 MU2=MUZMAX,MUZMIN
MM1P2=MMMU1+MU2
JTRIGM=JTER¥3-MU2

C SIGN=EPSILON( MU1)*EPSILON(M-MUI-MU2])

487

488

IF(MM1P2.GT7.0) SIGN=-SIGN
TMO=PCD{JL2+MU2 ) *PMN(JLZ+TABS(MM1P2) )*SIGN
SUM1=SUM1+THO*COSM(JTRIGN)
SUM2=SUM2+TMO*SINM(JTRIGM)
GO TO 495

SIGN2=SIGN1

DO 48S MU2=1,MUZMAX
MM1P2=MMMU1+MU2
MMM12=MMMU1-MU2
JTRIGP=JTERM3+MUZ
JTRIGM=JTERM3-MU2

C SIGN2=(-I)*x( MULI+MU2)

SIGN2=-SIGN2

C SIGN=EPSILON( MUL)}=*EPSILON(M-MU1-MUZ2)

489

495

iF{MM1P2.GT«0) SIGN=-SIGN
TMO=SIGN*PMN(JL3+IABS(MM1P2))} "
TMI=SIGN2%*PMN(JL3-NMNMM12)
J=JL2+MU2

SUM1=SUM1+PCD(J)*( TMC=COSM(JTRIGM) +TM1*COSM(JTRIGP))
SUM2=SUM2+PCD(J) X (TMG*SINM(JTRIGM) +TM1I*SINM(JTRIGP))

IF{MU2MIN.EQ.MU2MAX) GO TO 495
MU2Z2MAX=MU2MAX+1

GG T0 486

IF(IND.GT.0) GO0 70O 52C

C SUMS OVER MUZ2 FOR —-MU1

MPMULl=M+MU1

JTERM3=JTRIG-JTERM

MU2MAX=MINC( LAMBD2,MPMUL+LAMBD3) .
MU2MIN=MAXO(-LAMBD2,MPMUI-LAMBD3)

C SIGNM1=(~-1)*{M-MU1l)

SIGNM1=-SIGNM1

IF (MU2MIN.GT.0) GO TO 500
TMO=SIGNM1*PCD(JL2)*PMN(JL3+MPMU1)
SUMI=TMO=COSM(JTERM3)+SUML
SUM2=TMC*SINM(JTERM3)+SUM2

IF (MU2MIN.LT.C) GO TO 510
IF(MU2MAX.EQ.0) GO TG 520
MUZMIN=1

500 SIGN=SIGNM1
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533 DO 505 MU2=MUZMIN,MUZMAX
MPLM2=MPMU1-MU2
IF(MPIMZ.LT.Q) SIGN=-SIGN
SIGN=EPSILON{MUZ2 )*EPSILON(M-MU1-MU2)
JTRIGP=JTERM3+MU2
TMO=SIGN*PCD(JL2+MU2)*PMN(JL2+IABS(MPLM2))
SUM1=SUM1+TMO*COSM(JTRIGP)
505 SUM2=SUM2+TMO*SINM(JTRIGP)
GO TO 520
510 MU2MIN=-MUZMIN
SIGN =SIGNM1
SIGN2=SIGNM1
DO 515 MU2=1,MUZMIN
MP1M2=MPMUl-MU2
MPM12=MPMU1+MU2
SIGN=EPSILON(MU2 )*EPSILON(M-MU1-MU2)
IF(MP1M2.LT«0) SIGN=-SIGN
SIGN2=(~-1)*=(M-MU1-MU2)
SIGN2=-SIGN2
JTRIGP=JTERM3+MU2
JTRIGM=JTERM3-MU2
TMO=SIGN2*PMN(JL3+¥PM12)
TM1=SIGN*¥PMN(JL3+IABS(MP1IM2))
J=JL2+MU2
SUM1=SUM1+PCD(J)*(TMOXCOSM(JTRIGM) +TMI=COSM(JTRIGP))
515 SUM2=SUM2+PCD(J)*(TMO*SINM(JTRIGM)+TMI*SINM(JTRIGP))
IF(MU2MIN. EQ. MU2MAX) GO TO 520
MUZ2MIN=MUZMIN+1
GO TO 503
520 J=JLi+MUL
SUMP=SUMP+PAB (J)*SUM1
550 SUMN=SUMN+PAB(J)+SUM2
IF(MUHI.EQ.MUIMAX} 680 TO 570
IF INDeGT<0y MUHI=MUIMAX ALWAYS

NOW LOOP THRU MUl FOR VALUES OF IABS(MU1l) WHICH APPEAR
ONLY AS +MUl

IND=1
MULON=MUHI+1
GO TO 469
560 IND=-1
MUHI=—MUIMIN
SIGNMI=SIGNM
GO TO 465
57C SUMM(JP)=CONST*SUMP
SUMM( JM)}=CONST*SUMN
575 IF(M«NE.L) JTM=LMAXP=LMAXP
1 ~((LMAXP+1)*(LMAXP-1)+#M:M) /4+JTM
58C CONTINUE
590 CONTINUE
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595 CONTINUE
600 CONTINUE

RETURN
END

PROGRAM 63 MUSUM3

C MUSUM3 - FOR 3—CENTER INTEGRALS (AAICD) AND (ABIAD) .

c

C ENTRY FOR (AA|CD)

c
c
c

c

PCD,PHICD REFER TO CD
PMN,PHIMN REFER T3 AN

SUBROUT INE MUAACD(SUMM, NCENTR,LMAX,PCDyPMN,PHICD,
PHIMN)

IMPLICIT REAL*8(A-H,0-7)

COMMON/NUCLEI/CENTER(3441,CHRG(4)9LHI(4)

COMMON/SETUP/DUM(15) 4RECIP(16),RRT2PI,DUMM(138),
COSGO0(4),COSM(8) 3 SINM(8) ,COSMMU(9,8) 5 STNMMU(9,8)

DIMENSION RMIDPT(3)sNCENTR(4),POWER(8)sPCD(45)sPMN{45)

DIMENSION SUMM(1)

DATA RT2P1/2.5066€28274631001/

SUMM(1)=RRT2PI

IF(LMAX.EQ.Q) RETURN

C FIND COGRDS OF VECTOR BETWEEN POINT A AND MIDPOINT BF RCD

C

OO0

RMN=C. ODO

DO 102C I=1,3

RMIDPT{I)=0.5D0*{CENTER(I,NCENTR(3))
+CENTER(IZNCENTR(4))) — CENTER(I,NCENTR(1)})

1020 RMN=RMN+RMIDPT(I)*RMIDPT{1}

RMN=DSQRT (RMN)

ASSIGN 1316 TO KTYPE1

ASSIGN 1342 TO KTYPEZ

JP=1

IF(ABS(SNGL(RMIDPT(3))).NE.SNGL(RMN)) GO TO 1200
CALL TRIG1(LMAX,PHICD)

TRIG1 CALCULATES AND STORES SINE AND COSINE OF ANG

FOR ALL M

ANG= M¥*PHICD FOR CASE MUi=0,MU2=M, PHIMN,PHIAB

UNDEFINED

IF(SNGL(RMN).NE.O.0) GO TO 11CO0
ASSIGN 1320 TO KMO



c
c
c

OO0

OOOOONO
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ASSIGN 1395 TG KM

GO T0 1210

IF(SNGL{RMIDPT{3)}).LT.0.0) GO TO 1105
ASSIGN 1120 TO KZ

GO TO 1110

ASSIGN 1115 TO KZ

CALCULATE PMN(L,0) FOR CASE COSTH=1 OR -1

111¢

PLMBAR CALCULATES PMN(L,M} FOR GENERAL CASE

PMN{1)=RRT2PI

JOLD=1

D3 113C L=1,LMAX

J=JOLD+L

GO TO KZ,(1115,13120)
PMN(J)=-RECIP(L)*PMN(JCLD)

GO TO 1130
PMN(J)= RECIP(L)*PMN(JOLD)
JOLG=J

ASSIGN 1345 TO Ki

ASSIGN 1405 TO K2

GO TO 1205

ASSIGN 1355 70 K1

ASSIGN 1450 TO K2
PHIMN=DATAN2(RMIDPT(2),RMIDPT(1))
COSTH=RMIDPT (3} /RMN

CALL PLMBAR(COSTHsLMAX,PMN)

TRIG2A CALCULATES AND STORES SINE AND CGOSINE OF ANG
FOR ALL M.MU2

1285
1207

1214

CALL TRIGZA(LMAX,PHICD,PHIMN)
ASSIGN 1335 TO KPCW
POWER(1)=RMN

ASSIGN 1330 TO KMO
ASSIGN 1400 TO KM
ASSIGN 130C TO KLMIN
RPC=-1,GD0
LMAX1=LMAX+1

DO 1595 LAM2=1,LMAX1
LAMBD2=LAM2-1
RPC=-RPC

C RPC=(-1)**LAMBD2

JL2=LAMBD2*LAM2/2+1
GO TO KLMIN,(1220,1300,1215)

ANG=MU2*PHICD+(M—-MU2)*PHIMN FOR CASE MUl=C,PHIAB

UNDEFINED



157

C 2ND TIME THRU LOCP ON L. POWER WAS CALCD 1ST TIME,

c NEXT STMT PREVENTS RECALCULATION
1215 ASSIGN 1340 TO KPOW
ASSIGN 1220 TO KLMIN

c
C 2ND AND SUBSEQUENT TIMES THRU LOGP ON L -~
c CALC SUMM FOR L=LAMBD2. THIS IS SKIPPED FOR
c LAMBD2=0 BECAUSE THAT CASE, SUMM(1)}, HAS BEEN DONE
1220 JIM=JP
JP=JP+LAM2
c
C M=0
SUMM(JP)=RPC*PCD(JL2)
c
C ALL M NOT ©
SIGN=RPC
DG 1270 M=1,LAMBD2
JN=JIM+1
JP=JP+1
C SIGN=(-1)*>*(M+LAMBD2)
SIGN=-SIGN

TMO=SIGN=PCD(JL2+M)
SUMM(JP)=TMO*COSM(M)
SUMM(JIM)=TMO*SINM(HM)
127C CONTINUE
GO 7O 131¢
c
C 1ST TIME THRU LOOP ON L
13G0 ASSIGN i215 TO KLMIN
1316 IF(LAMBD2.EQ.LMAX) RETURN
C ALL L.GT.LAMBD2
LMIN=LAMBDZ+1
CONSTA=DSIGN(RT2PI 4RPC)
GO TO KTYPE1,(1314,1316)
1314 CONST=CONSTA
1316 DO 1590 L=LMIN,LMAX
JM=JP
JP=JP+L+1
GO TO KM0,(1320,1330)
C RMN=0
1320 SUMM{JP)=0.0D0
GO TO 139¢
C RMN.NE.O
1330 GO TO KPOW,(133541340)
1335 IF(L.NEel) POWER(L)=RMN*POWER(L-1)
1340 LAMBD3=L-LAMBD2
JL3=LAMBD3*(LAMBD3+1)/2+1
GO TO KTYPEZ2,(1342,1355)
1342 CONST=CONSTA*POWER(LAMBD3)
c
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c M=0
GO TO K14(1345,1355)
c
C COSTH=1 OR -1
1345 SUMM(JP)=CONST*PCD(JL2) *PMN(JL3)
GO 70 1390
C
C GENERAL VALUE OF CQOSTH
1255 TMO=PCD{JL2)*PMN(JL3])
SUMP=0., ODC
MUZMAX=MINO(LAMBD2,LAMBD3)
IF{MU2MAX.EQeQ) GO TO 1361
SIGN=1.0DC
DO 1360 MU2=1,MU2MAX
C SIGN=(-1)**MU2
SIGN=—-SIGN
- 1360 SUMP=SUMP+SIGN*PCD(JL2+MU2)*PMN(JL3+MU2)*COS00(MU2)
1361 SUMM{JP)=CONST*{TMC+2.0D0*SUMP) .
C
C ALL M.GT.0O
1390 SIGNM=1,0DO0
DO 1580 M=1,L
JM=JM+1
JP=JP+1
GO TO KM,{1395,1400C)
C RMN=0
1395 SUMM(JM)=0.0D0
SUMM(JP)=0.,0D0
GO TO 158¢C
€ RMN.NE.Q
C SIGNM=(-1)}*=*
140C SIGNM=—SIGNM
GO TO K249(1405,1450)
C COSTH=1 DR -1
1405 IF(M.LE.LAMBD2) GO TQ 141§
SUMM(JP)I=0.0D0
SUMM(JM)=0.0D0
G0 TO 158¢C ;
1410 TMO=CONST*SIGNM%=PCD(JL2+M)*PMN(JL3)
SUMM(JP)=TMO*COSM(M)
SUMM{JM)=TMO*SINM(M)
GO TO 1580
Cc
C GENERAL VALUE OF COSTH
1450 MUZMIN=MAXO(-LAMBD2,M—-LAMBD3)
MU2MAX=MINC( LAMBD2,M+LAMBD3)
MULOW = (LMAX—-M)/2+1
IF(MU2MIN.GT.0) GO TC 1458
TMO=SIGNM*PCD(JL2})=*PMN(JL3+M)
SUMP=TMO*COSMMU{ MULONW, M)
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SUMN=TMO*SINMMU(MULGW, M)
IF(MU2MIN.LT.Ci GO TO 1464
IF(MU2MAX.EQe0) GO TO 1570
MU2MIN=1
GO 7O 1459
1458 SUMP=0.CD0
SUMN=0.,0DC
1459 SIGN=SIGNM
1460 DO 1462 MU2=MUZMIN,MUZMAX
MMMU2=M-MU2
C SIGN=EPSILON(MU2)*EPSILON(M-MUZ)
IF(MMMU2.LT.0) SIGN=-SIGN
1461 TMO=SIGN*PCD(JL2+MU2)*PMN(JL3+IABS (MMMU2)})
JTRIGP=MULOW+MU2 .
SUMP=SUMP+TMO*COSMMU(JTRIGP,M)
1462 SUMN=SUMN+TMO*SINMMU{(JTRIGP M)
G0 70 1570
1464 MUZ2MIN=-MUZMIN
SIGN2=SIGNM
SIGN=SIGNM
DO 1467 MU2=1,MU2NMIN
C SIGN2=(-1)*%x(M-MU2)
SIGN2=—-SIGN2
MPMU2=M+MU2
MMMU2=M-MU2
C SIGN=EPSILON(MU2)*EPSILON(M-MU2)
IF(MMMU2.LT.0) SIGN=-SIGN
TMO=SIGN2*PMN(JL3+MPMU2)
TM1=SIGN*PMN(JL3+IABS(MMMU2)])
J=JL2+MU2
JTRIGP=MULCHW+MU2
JTRIGM=MULOW-~-MU2
SUMP=SUMP+PCD(J) = { TMO*COSMMU(JTRIGM,M)

1 +TM1*COSMMU(JTRIGPsM))
1467 SUMN=SUMN+PCD(J)}*(TMO*SINMMU(JTRIGMsM) .
1 +TM1*SINMMU(JITRIGP s M) )

IF{MU2MIN.EQ.MUZ2MAX) GO TG 1570
MUZ2MIN=MUZ2MIN+1
G0 TO 1460

157C SUMM{JP)=CONST*SUMP
SUMM(JM)=CONST*SUMN

1580 CONTINUE

159C CONTINUE

1595 CONTINUE
RETURN

ENTRY FOR (AB|AD)
PCD,PHICD REFER TO AB
PMN, PHIMN REFER TO AD

OO0



160

ENTRY MUABAD(SUMM, LMAX, PCDyPMNs PHICDPHIMN) .
SUMM(1)=RRT2PI -

IF(LMAX.EQ.C) RETURN

ASSIGN 1314 TO KTYPE1

ASSIGN 1355 TO KTYPE2

ASSIGN 134C TO KPOW

ASSIGN 1450 TO K2

JpP=1

CALL TRIGZ2A(LMAX,PHICD,PHIMN)
GO TO 1207

END

PROGRAM 73 MUSUMZ2

QOO0

OO0

OO0

MUSUM2 -
FOR 2-CENTER INTEGRALS (AA|CC)s(ABIAB)y AND (AA[AD)

ENTRY FOR (AA|CC)-COULOMB

SUBROUTINE MUCOUL(SUMMyNCENTRy LMAXsPLMsPHI)

IMPLICIT REAL*8(A-H,0-Z)

COMMON/NUCLEI/CENTER(344),CHRG(4) 4 LHI(4)

COMMON/SETUP/DUM(15) ,RECIP(16)sRRT2PI,DUMM{138),
C0S00(4) yCOSM(8)4SINM(8),COSMMU(S,8), SINMMU(9,8)

DIMENSION RMIDPT(3),NCENTR{4},PLM(45)

DIMENSION SUMM(1)

SUMM(1)=RRT2PI

IF(LMAX.EQ.0) RETURN

ASSIGN 335 TO KPOW

FIND COORDS OF VECTOR BETWEEN PCINTS A AND C

20

RMN=0.0D0

DO 20 I=1,3
RMIDPT(I)}=CENTER(IsNCENTR(3))-CENTER(I,NCENTR(1)]}
RMN=RMN+RMIDPT(I)*RMIDPT(I)

RMN=DSQRT (RMN)
IF(ABS(SNGL{RMIDPT(3)))<NE.SNGL{RMN)) GO TO 200
IF(SNGL(RMN) «EQ.0.Q) RETURN

ASSIGN 350 TO K

CALCULATE PMN(L,0) FOR CASE COSTH=1 OR -1

IF(SNGL(RMIDPT(3)}elLTede0) GO TO 105
ASSIGN 120 TO KzZ
G8 TO 1il0
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105 ASSIGN 115 TO KZ

110 PLM(1)=RRT2PI
JOLD=1
DO 130 L=1,LMAX
J=JOLD+L
GO TO KZs{115,120)

115 PLM(J)=-RECIP(L)*PLM(JOLD)
60 TO 130

12C PLM(J)= RECIP(L)*PLM(JCLD) .

130 JOLD=J '
GG TO 300

200 ASSIGN 380 TO K
PHI=DATANZ2(RMIDPT(2),RMIDPT(1))
COSTH=RMIDPT(3)/RMN

PLMBAR CALCULATES PMN(L,M) FGR GENERAL CASE

CALL PLMBAR{COSTH,LMAX,PLM)
CALL TRIG1(LMAX,PHI)
GO TO 300

ENTRY FOR (AB|AB)-EXCHANGE AND (AA{AB}-HYBRID

PLM, PHI REFER TO AB

ENTRY MUEXHY (SUMMysLMAX,PLM,PHI)

SUMM(1)=RRT2P1

IF{LMAX.EQ.C) RETURN

ASSIGN 340 TO KPOW

ASSIGN 380 TO K

CALL TRIGI(LMAX,PHI)
30C JP=1

POWER=1.CDO

DO 500 L=1,LMAX

JL=L*x(L+1)/2+1

GO 70 KPOW, (335,340)
335 POWER=POWER*RMN

340 JM=JP
JP=JP+L+1
SUMM(JP)I=PLM{JL)*POWER

AtL M.GT.0
SIGNM=1,CD0
D3 450 M=1,L
JM=JM+1
JP=JP+1
GO TO Ky (350,380)
350 SUMM(JP)=0.0DC
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450
500
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SUMM(JM) =0.0D0

GO TO 450

SIGNM=-SIGNM
TMO=SIGNM*POWER*PLM(JL+M)
SUMM(JP}=TMO*COSM(M)
SUMM(JM) =TMO*SINM(M)
CONTINUE

CONTINUE

RETURN

END

PROGRAM 8: TRIG3

c
c
c

1

100
22C.

TRIG

COMPUTES SINES AND COSINES NEEDED BY MUSUMS

SUBROUTINE TRIG3 (MMAX,MU1MAX,PHIAB,PHICD)

IMPLICIT REAL*8(A~H,08-2)

COMMON/YS/RECIP(24) 4RRT2PTI,PMN(45),PRIMN,COS00(4),
COSO(26),COSM(386) ySINM{386)

IF(MMAX.EG.0) RETURN

ANGLEI=PHIAB-PHIMN

ANGLE2=PHICD—-PHIMN

IF(MMAX.EQ.1) GG TO 120

MU1IMAX=MMAX/2

J=0

DO 100 MUl=1,MUIMAX

M2LOW=MU1-MUIMAX+8

M2MAX=MUIMAX+8

ANGLEA=MU1*ANGLEL

C0OS00(MU1)=DCOS(MUIFANGLE2)

D0 100 M2=M2L0OW,M2MAX

MU2=M2-8

J=J+1

COSO(J)=DCOS(ANGLEA-MU2*ANGLE2)

J=0 "

DO 200 M=1,MMAX

ANGLEA=M*PHIMN

M1LOW=(M-MMAX)/2+8

MIMAX=(M+MMAX)/2+8

DO 200 Mi=M1LCW,M1IMAX

MU1=M1-8

ANGLEB=MU1*ANGLE1+ANGLEA

IF(MUl.LT.0) GO TQ 15C°

MZ2LOW=M1LOW

M2MAX=M1MAX-MU1l
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GO TO 160

150 M2LOW=M1LOW-MUL
M2MAX=M1MAX

160 DO 200 M2=M2LOW,M2MAX
J=J+1
MU2=M2-8
ANGLE=MUZ2*ANGLE2+ANGLEB
COSM(J)=DCOS(ANGLE}

20C SINM(J)=DSIN(ANGLL]
RETURN

ENTRY TRIGZ(MMAX,MU1MAX,PHIAB,PHICD)
IF({MMAX.EQ.0O) RETURN
ANGLEA=PHIAB-PHICD
IF{MMAX.EQ.1) GO TO 320
MUIMAX=MMAX/2
J=MUIMAX+1
DO 300 MUl=1,MUIMAX
C0S0(J)=DCOS(MUL*ANGLEA)

300 J=J+2%MULIMAX+1-MU1L

320 J=(1+MMAX)/2+1
D0 400 M=17,MMAY
ANGLEp=M¥2HILD
MILGOw=(M—MMAX)} /7 2+8
MPMMAX=M+MMAYX
MIMAX=MPMMAX/2+8
JDIF=MMAX-MOD (MPMMAX42)
DO 350 M1=M1LOW,M1MAX
MU1=M1-8
ANGLE=MU1>ANGLEA+ANGLESB
COSM{J)=DCOS{ANGLE)
SINM(J)=DSIN(ANGLE)
IF(M1.EQeM1MAX) GO TO 356
IF(MUl1.LT.0) GG TO 340
J=J+JDIF-MU1
GG TC 350

340 J=J+JDIF+MUL+1

350 CONTINUE

400 J=J+MMAX+1
RETURN
END
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PRCGRAM 9: TRIG2A

C TRIG2A
C
SUBROUTINE TRIG2A(MMAX,PHI1,PHI2)
IMPLICIT REAL%8(A~H,0-Z)
COMMON/SETUP/DUM(15) ,RECIP(16),RRT2PI,DUMM(138),
i COS00(4),COSM{8) ;SINM(8),COSMMU(9,8) 3 SINMMU(S,8)
IF (MMAX.EQeC) RETURN
CALL TRIGL(MMAX,PHIL)
ANGLEA=PHI1-PHI2
IF (MMAX.EG.1) G3 7O 50
MUMAX=MMAX/2
DO 30 MU=1,MUMAX
30 COSO0(MU)=DCOS(MU*ANGLEA)
5C MMAX1=MMAX+1
DO 100 M=1,MMAX
ANGLEB=M*PHI2
MMAXM=MMAX—M,
MUAMAX=MMAX1—MGD (MMAXMs2)
MULOW=MMAXM/2+1
DO 100 MUA=1,MUAMAX
MU=HUA~MULOW
ANGLE=MU*ANGLEA+ANGLEB
CGSMMU( MUA M) =DCCS(ANGLE)
100 SINMMU({MUAsM)=DSIN(ANGLE)
RETURN
END

PROGRAM 10: TRIG1

C TRIGL
C
SUBROUTINE TRIG1 (MMAX,PHI)
IMPLICIT REAL*8(A~H,0-2)
COMMON/SETUP/DUM(15) yRECIP(16)4RRT2PI,DUMM(138),
1 C0S00(4),COSM(8) s SINM(8) 3COSMMU(9,8) s SINMMU(I,8) .
1 SINM(8),COSMMU(9,8) s SINMMU(9,8) :
IF(MMAX.EQeQ) RETURN
DGO 100 M=1,MMAX
ANGLE=M*PHI
CCSM(M)=DCOS(ANGLE)
100 SINM(M)=DSIN(ANGLE)
RETURN
END
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PROGRAM 11: PLMBAR

PLMBAR
PLM(J)=ASSOC.LEGENDRE FCN/SQRT(2%PI)*(L+M) FACTORIAL

JILyMI=LF(L+1)/24M+1

SUBROUTINE PLMBAR{X,LMAX,PLM)
IMPLICIT REAL*8(A-H,0-2)
COMMON/YS/RECIP(24) oRRT2PI
DIMENSION PLM(1)

C RRT2PI=1.0/SQRT(2*P1I)

c

10

PLM(1)=RRT2PI

IF(LMAX.EQ.0) RETURN

SINE=DSQRT{1l.0DO-X*X)

JOLD=1

DO 10 L=1,LMAX

JNEW=JOLD+L+1

PLM{JNEW)=RECIP(2*L)=*SINE*PLM(JOLD)

PLM{JNEW-1)=X*PLM(JOLD)

JOLD=JNEW

IF(LMAXsLE.1) RETURN

M1IMAX=LMAX-1

DO 20 M1=1,M1MAX

M=M1-1

M2=M1+1

JOLD=M3i*M2/2

J=JOLD+M1

DG 20 L=M2,LMAX

JNEW=J+L

PLM{JINEW)=RECIP(L+M)*RECIP(L-M)
*((2%L-1)*X*PLM(J)-PLM(JOLD) )

JOoLD=J

20 J=JNEW

RETURN
END
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PROGRAM 12: GEOM4C

c
c
c
c
C
C
C
C
c
c
c
C
c
c

OO0

aEeXeNe]

GEOM4C CALCULATES ARRAY A,WHICH IS INDEPENDENT OF ZETAS,
FOR INTEGRALS (AB{CD),(ABIAD), AND (AB[AB)
ARGUMENTS LAP,MAP,ETCs ARE ORBITAL QUANTUM NUMBERS
LTOP=LARGEST VALUE ATTAINED BY (LA+LB+LC+LD)
NTYPE=NUMBER OF CENTERS
NGAB=ONE LESS THAN THE SUBSCRIPT OF THE FIRST
GAB FOR LA,LB,MA,MB
NGCD=0ONE LESS THAN THE SUBSCRIPT OF THE FIRST
GCD FOR LC,LD,MC,MD
NA=SIZE OF ARRAY A (CALCULATED BY GEGOM)
INDICES RUN IN THIS ORDER, WITH LAST ONE CHANGING
FASTEST - ALPHA1,BETA1l,SIGMAl,ALPHAZ,BETA2,
SIGMAZ2,LAMBDAL ,LAMBDAZ,L

SUBROUT INE GEOM4C{SUMM, OMEGA,LAP,MAP,LBP,MBP,LCP,MCP,
1 LDP,MDP,LTOP,NA,NTYPE,NGAB,NGCD)

IMPLICIT REAL*8B(A-C,E-H,0-Z}),LO0GICAL*1(D)
COMMON/AF/SHAM(30)+4GAB(340),6GCD(240),A(3548)
DIMENSION SUMM(1),0MEGA(1)

IF{NTYPE-3) 1,2,3

INTEGRAL IS TYPE (AB{AB) - LAMBDA1=LAMBDA2=0
1 LAM1MX=1
LAMZ2MX=1
ASSIGN 46 TO XNTP
ASSIGN 48 TO KNTYPE
G8 TO 4

INTEGRAL 1S TYPE (ABJAD) - LAMBDAl=C,
LAMBDA2 RUNS FROM 0 TO (SIGMA1+SIGMA2)
2 LAMIMX=1
ASSIGN 46 TO KNTP
ASSIGN 47 TO KNTYPE
GO TO 4

INTEGRAL IS TYPE (ABICD) -
LAMBDA1 RUNS FROM 0 TO (SIGMA1+SIGMAZ},
LAMBDAZ RUNS FROM 0 TO (SIGMA1+SIGMA2-LAMBDAL)
3 ASSIGN 47 TO KNTYPE
ASSIGN 45 TO KNTP

4 CONTINUE
IT=LTOP+1
LTPROD=2FIT*{IT+1)*(4*LTOP+3)
LT1SQ6=€6*IT*1IT
IF(LAP.LT.LBP) GO TO 5
LA=LAP
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MA=MAP
LB=LBP
MB=MBP
GO TO 6
LA=LB®P
MA=MBP
LB=LAP
MB=MAP

NOW LA.GE.LB

€

7

MABMAX=MAXG(IMA{, IMB1)}
MABMIN=MING({MA},IMB])
MABDIF=MARMAX-MABMIN

icC

15
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MAMMB =TABS(MA)-TABS(MB}

IF(MAMMB) 7,8,9
MABMAX=TABS(MB)
MABMIN=TABS(MA)
MABDIF=-MAMMB
G0 7O i0C
MABMAX=TABS(MA)
MABMIN=MABMAX
MABDIF=0

G0 70 1¢C
MABMAX=TABS(MA)
MABMIN=TARS(MB)
MABDIF=MAMMB

IF({LCPLTLOP)
LC=LCP

MC=MCP

LD=LDP

MD=MDP

GO 70 i¢€
LC=LDP

MC=MDP

LB=LCP

MD=MCP

NOW LCeGEeLD

GO 70 15

ié& MCMMD=TABS(MC)-IARS{MD)

17

19

IF{MCMMD) 17,18419

MCDMAX=IABS(MD)
MCDMIN=TIABS(MC)
MCDDIF=-MCMMD
GO 70 20
MCDMAX=TABS(MC)
MCDMIN=MCDMAX
MCDDIiF=0C

GO TO 2¢C
MCDOMAX=IABS(MC}
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MCDMIN=IABS(MD)

MCDDIF=MCMMD
MCDMAX=MAXO( IMCl,IMD])
MCDMIN=MINOQ({MCl,{MD|)
MCDDIF=MCDMAX~MCDMIN

2C LAMLB=LA-LB
LCMLD=LC-LD
LALB=LA+LB
LCLD=LC+LD
LBMA=LB+IABS(MA)
LAMB=LA+IABS(MB)
LOMC=LD+IABS{MC)
LCMD=LC+IABS(MD)
MMAB=TABS(MA)+TABS (MB)
MMCD=TIABS(MC)+IABS(MD)
LAMMA={ B-TABRS(MA)
{AMMB=LA-TABS{MB)}
LOMMC=LD-IABS(MC)
LCMMD=LC-TABS(MD}
MOD1=MOD{(LALB+MMAB,2)
MODZ=MQD(LCLD+MMCD,2)
IF(MA,LTs0) GO TO 507
IF(MBeLTeC) GO TO 50€
DSGNAB=.TRUE,
GO 70 510

50& DSGNAB=,FALSE.
GG TO 51¢C

507 IF(MB.LTeC) GO TC 5C8
DSGNAB=, FALSE,
GO 70O £10

508 DSGNARBR=,TRUE,

DSGNAB=, TRUEs IFF MA AND MB HAVS SAME SIGN (0 IS +)

510 IF({MC,LT40) GG TO 517
IF(MD.,LT. Q) GO 7O 516
DSGNCO=( TRUE.

GO 7O 520

51¢ DSGNCD=<FALSE.
GO TO 520

517 IF(MD,LT.0) GO TO 518
DSGNCD=, FALSE.

GO TO 520

518 DSGNCD=.TRUE.
DSGNCD=.TRUE, IFF MC AND MD HAVE SAME SIGN (0 IS +)

520 CONTINUE
JA=C
JGABP=NGAR
IAIMIN=8~LB
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TAIMAX=8+LA

1A2MIN=8-LD

TAZ2MAX=8+LC

DD 48C TAlI=IAiMIN,TAIMAX
IALPH1I=TAl-&
LLAAB=TABS(LAMLER-TALPHI )
MODAB=MOD(LLAAB,2)
MIHIT=MINO{LRMA+IALPH1,LAMB-TALPH1)
IF(TIALPH1.EQ.C) GC TO 521

BETAl.NE.O

IGAB=Z

DB1EQO=« FALSE.
1Gi=1

ASSIGN 54C TO KB1
ASSIGN 24C TO KBO1l
GO 70 524

FIRST VALUE OF BETAi=0

521

1GAB=1

DB1EQO=¢ TRUE,

161=0

ASSIGN 530 TC KB1
IF(DSGNAB) GO TO 522
ASSIGN 251 TQ KBQ1
GO TO 524

ASSIGN 240 TO K8Q1

CONTINUE

IBIMIN=TABS(IALPHI)+1
IBIMAX=LALB-LLAAB+1

DO 480 IBi=IBIMIN,IBIMAX,2
IBETAl=1IB1-1

ISIMAX=LALRB-IBETAl+l

D3MIN1=, FALSE.

IF{MABMIN.GT.IBETAl) DBRMIN1=,TRUE,
MDIFB1=MABDIF-IBETAl
MSUMB1=MMAB-IBETAl
MINA=MINO(LAMMB-TALPHL, IBETALI+MAMMB}
MINB=MINQ(LBMMA+TALPHLl, IBETA1-MAMMB)
LILO=MAXC(LLAAB,MDIFB1+MOD1)
ISIMIN=LILO+]
M1LO=MAXO(C,y~LBMMA-IALPHl s~LAMMB+IALPH1,MDIFB1)
DELAB=.TRUE.

IF(M1L0. EQeC) GO TO 527
MILOM1=MiLO-1

MIMIN=MILO

DMODM1=, FALSE.

IF(MOD(M1L0,2).EQ.0) DMONMI=, TRUE.
GO YO 528
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527 MiLOMi=-1
MIMIN=1

£28 MIHI=MINO(MIHIT, IRETAI1+MMAB)
IF(LILOLLTLMIHI) GO TO 21
ASSIGN 23 TO KG1
ASSIGN 80 TO KJ1
GO TO-22

21 ASSIGN 24 TO KG1
LILOF=LILO*(L1ILO-2)

22 GO 7O KB14(520,+525,540)

c
C BETAL=0
£230 IF(M1L0.EQe Qe AN+ NOTo.DSGNAB) DELAB=, FALSE,
ASSIGN 525 TO K81
GO TO 540
C

C BETAL NO LCONGER C

£35 ASSIGN 240 70O K801
ASSIGN 540 TO KB1
1GAB=2
1G1=1
DB1EQO=. FALSE,

S4C DO 480 ISi=TSIMIN,ISIMAX.2
JGCDP=NGCD
ISI1Gi=1S81-1
ISIP1=1S1+1

JGABD=MILOMI*{(ISIP1-LILO)
GO TO KG1,(23,24)

23 JT=MIHIX%(ISIPI-L1LO)/2
GO 7O 28

24 IF(ISIG1.,6T,MIKRI) GO TQ 2%
JT=(ISIGI*ISiPl1-LILOF)/4
ASSIGN 120 7O KJ2
GO TO 28

25 IF(MONAR, EQ,MOD(M1HI,2)) GO TO 26
IT=1
G0 10 27

2¢ 17=0

27 JSTI=IT+LILOF+MIHI*(MIHI+2)
JT=(2%1S1PLI*MIHI-JGT1}/ 4
ASSIGN 10C TO KJ1

28 IF (DB1EGO) GG TO 550
IF(MILOLEQ.C) JGABD=JGABD/2
JGABD=2%JT-JGABD
GO TO 560

E5C IF(DELAB) JT=JT-4GABD/2
JGABD=JT

C JGABD=NUMBRER GF FUNCTIONS GAB
C FOR GIVEN SET (IALPH1,IBETAl1,ISIGl)
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CONTINUE

DO 47C IA2=TAZMIN,IA2MAX
IALPH2=1A2~8
LLACD=TABS(LCMLD-IALPHZ)
MODCD=MOD(LLACD,2)
M2HIT=MING(LDMC+TIALPH2,LCMD-TALPH2)
IF(IALPHZ.EQeO) GC TO 620

BETA24NE&C

IGCD=2

162=1
DB2EQO=+FALSE.
ASSIGN 640 TO K82
ASSIGN 242 TO KBOO2
ASSIGN 297 TO KB8MO2
GO TO 624

FIRST VALUE OF BETAZ2=0
620 IGCD=1

1G2=0

DB2EQC=+ TRUE

ASSIGN 620 70O KB2
IF(DSGNCD) GO TO 622
ASSIGN €80 TC KBOO2
ASSIGN 29S TO KBMO2
GO TO 624

ASSIGN 242 TO KBOG2
ASSIGN 267 TO KBMQ2

CONTINUE

IB2MIN=TIABS(IALPH2)+1
IB2MAX=LCLD-LLACD+1

DO 47C 1B2=IB2MIN,IB2MAX,2
IBETA2=1IB2~1

IS2MAX=LCLD-IBETAZ+1

DBMINZ2=¢ FALSE.

IF(MCDMIN.GT. IBRETA2) DBMINZ2=, TRUE.
MDIFB2=MCDDIF-IBETA2
MSUMB2=MMCD-IBETAZ2
MINC=MINQ{LCMMD-IALPH2, IBETA2+MCMMD)
MIND=MINC(LDMMC+IALPH2, IBETA2-MCMMD)}
L2LO=MAXC(LLACD,MDIFB2+M0OD2)
IS2MIN=L2L0+1

M2L0=MAXQ (Qy~LDMMC-TALPH2,-LCMMD+IALPH2,MDIFB2)
DELCD=« TRUE,

IF(M2L0.EQ.0Q) GO TO 627
MZ2LOMI=M2L0-1

M2MINP=M2LO

OMODM2=4 FALSEe



c
c

172

IF(MOD(M2L0,2).EQa0) DMODM2=. TRUE.
GO TO 628

627 M2LOM1=-1

M2MINP=3

628 M2HI=MINO(M2HIT, IBETAZ+MMCD)

31

8V}

2

1

LLOWP=MAXO (M1 O-M2HI ,M2L0O-MIHI)

IF(MOD{IABS(LLOWP)} 2)eNEe IABS(MODAB-MODCD))
LLOWP=LLOWP+1

IF(L2L0.LT«M2HT) GO TO 31

ASSIGN 32 T0O KG2

ASSIGN 160 TO KJ2

GO TC 32

ASSIGN 24 TO KG2

LZLOF=L2L0*(L2L0~-2)

GO TO KB2,(620,6325,640)

BETA2=0
630 IF(M2L04EQeOe ANDsaNOToDSGNCDY DELCD=, FALSE.

ASSIGN €35 TO KRZ
G0 TO 640

BETA2 NO LONGER O
635 ASSIGN 242 TO KBGGO2

64C

ASSIGN 297 TO KBMO2
ASSIGN 64C TO KB2
1GCD=2

1G2=1

D82EQC=, FALSE.

D0 470 IS2=1S2MIN,ISZMAX,2
1S1IG2=1S2-1
1S2P1=1S2+1

JGCDD=M2LCOM1*(IS2P1-L2L0)
GO TC KG2, (33,34)
JT=M2HI*(1S2P1-L2L0)/2

G3 TC 38

IF(ISIG2.GTeM2HI) GO TO 35
JT=(ISIG2*1S2P1~L2L0OF1 /4
ASSIGN 2CC TO KJ2

GG TO 38
IF{MODCD. EQ. MOD{M2HI,2)) GO TO 36
IT=1

GO 70 37

IT=0
JET2=IT+L2LOF+M2HI*(M2HI +2}
JT=(2*1S2P1*xM2HI-JGT2)/4
ASSIGN 18C 7O KJ2
IF(DB25Q0) GO TO 650
IF(M2L0.EQeC) JGCDD=JGLCDD/2
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JGCDD=2*JT-JGCOD
GO TO 6€0
650 IF(DELCD) JIT=JT-JGCDD/2
JGCDD=J37
C JGCDD=NUMBER OF FUNCTIONS GCD
c FOR GIVEN SET (IALPH2,IBETAZ2,ISIG2)
c
€60 LLOW=MAXO(L1LO-ISIG2,L2L0-ISIGl1,LLOWP)+1
LMAX=ISIG1+1S?2
LMOD=MOC (LMAX,2)
GO TO KNTP4(45,46)
45 LAMIMX=LMAX
46 0O 460 LAMI=1,LAMIMX
LAMBD1=LAM]-1
IT=LAMI-2
JY1=(LTPROD-IT*(LTiSQ6-1T*(IT-1)))*LAMBD1/12
GO TO KNTYPE,(&47,48)
47 LAMZMX=LMAX-LAMRD1
48 DO 460 LAM2=]1,LAM2MX
LAMBD2=LAMZ2-1
IT=LAMBDI+LAMBDZ
LAMSUM=1T+1
JY12=JY1+{LT1SO6-(LAM2=-2)*(2*LAMBD2-1) ) *LAMBD2/¢
1 -LAMBDI*LAMBO2*(IT-1)-IT*IT
IF(LLOW. LT, LAMSUM) GO TC 59
LMIN=LLOW
GO 70 70
50 IF(MOD(LAMSUM,2).NE.LMOD) GO TO €0
LMIN=LAMSUM
GO 70 70
€C LMIN=LAMSUM+1

LMIN=MAXG(LAMBDAL +L AMBDA2, MILG-M2HI ,M2L0O~M1HI,

L1LO-SIGMA2,L2L0-SIGMAL)
(+#1 IF NEEDED TO MAKE (LMIN+SIGMAI+SIGMAZ) EVEN) +1

s NeNeNeNe!

70 DO 460 LP=LMIN,LMAX,2
L=LP-1
JY12L=JY12+L*L

C SUBSCRIPT FOR ARRAY SUMM = JY12L +M1 +0R- M2
C (+L+1 IF REAL PART)

LIMIN=MAXC{L1LO,L2L0-L,L-1SIG2)
LIMAX=MINO(IS1,L+IS2)
LiIDIF=LIMIN-LILO

IF(LIDIF.NE.O) GO TC 75
JGAB=JGARP
GO 70O 150
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75 JGAB=MILOMI*L1DIF
GO TO KJ1,(8C4100,120)
80 JT=M1HIX*LIRIF/2
GC TO 130
100 IF(LIMIN-2.LE.MIHI) GO TO 120
JT=(2%LIMIN*MIHI-3GT1)/4
G3 7O 130
120 JT={LIMIN=(LIMIN-2)=-LILOF) /&
i30 IF(DB1EQO) GO TO 140
IF(M1LC«EQe«Q) JGAB=JGAB/2
JGABR=JGABP+2*JT-JGAB
GO 70 12C
14C IF(DELAB) JT=dT7-JGAB/2
JGAB=JGABP+JT
AT THIS POINT JGAB 1S 1 LESS THAN THE INDEX FOR THE FIRST
GAB FUNCTION TO BE USED

150 JA=JA+l
SUM1=0,0DC
LIMIN=LIMIN+1
00 450 LI1P=LIMIN,L1IMAX,2
Li=L1P-1
L2ZMIN=MAXO(L2LC,IABS(L-L1))
L2MAX=MINC(IS2,L+L1P)
L2DIF=L2MIN~L2LO

IF(L2DIFeNE. Q) GO 70 155
JGCDT=J46GCDP
GO TO 220
155 JGCDT=M2LOMI*L2DIF
GO TO KJ2,4(160,180,20G)
16C JT=M2HI*L2DIF/2
GO TO 205
180 IF(L2MIN-2,LE.M2HI) GO TO 200
JT=(2%L2MINXM2HI-JGTZ) /4
GO TO 205
200 JT={L2MIN*{L2MIN-2)-L2L0OF) /&
205 TIF(DB2EQO} GC TO 210
IF(M2L0.EQeG) JGCDT=4GCDT/2
JGCDT=JGCOP+2*JT~-IJGCDT
GO TO 220
210 IF(DELCD) JT=JT-JGCDT/2
JGCDT=JGCOP+JT
AT THIS POINT JGCDT IS 1 LESS THAN THE INDEX FOR THE
FIRST GCD FUNCTION TO BE USED

220 MIMAX=MINO(L1 ,4MIHI)
MIMAXP=MINO(MIMAX,L-M2L0O)
MIMAXM=MINC (MIMAX,L+M2HI}
IF(MIMAXP.EQe MIMAXM) GO TO 230
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ASSIGN 255 7O KMI1
GO TO 235
230 ASSIGN 262 TO KM1
ASSIGN 29C 70 KL2
M2MIN=M2LO
238 SUM2=0.,00DC
L2MIN=L2ZMIN+1
IF{MILOL,EQ.C) GO TC KBO1,(240,4251)
IF(MIMIN,GT. MIMAXM) GG 7O 45¢C
IF(.NOT.DMODM1) GO 7O 252
ISIGN1=-1
GO TO 253

* % X% * X  x % k% * L N
Mi=0, SO IMAG,PART OF GAB=0

240 JGAB=JGAB+1
CALL DELG(MSUMB1,MINA,MINB,MAMMB,DSGNAB,DBMIN1,NBR1)
GO TC (241,251),NBR1
241 JGCD=J4GCOT
DO 250 L2P=L2MIN,L2MAX,2
L2=L2pP~-1
M2MAX=MINO(LZ2 4M2HI)
MZMAXM=MINO(MZMAX,L}

M2=0, SO IMAG, PART 0OF GCD=0
IF(M2L0,EQe0) GO TO KBCG2,{24Z2,680)
TF(M2MINP, GTo M2MAXM) GO TO 250
1F(.NOT,DM0ODM2) GO TO 243
ISIGNZ2=-1
GO0 70O 244

242 JGCD=JGCD+l1
CALL DELO(MSUMB2,MINC,MIND,MCMMD,DSGNCD,DBMINZ2,NBR2)

GO 7O (675,680),NBR2

€75 SUM2=SUM2+OMEGA(JOMG(L,L1,0,L2,0))%SUMM{JIY1I2L+LP)
1 *¥GCD(JGCD)I*Ce 5DO

680 IF(M2MAXM,LTe1) GO TC 250

LOOP OVER M2,NEeOyWITH M1.EQeO

2432 ISIGN2=+1

244 DO 245 MZ=M2MINP,M2MAXM
JGCD=3GCO+IGCD

ISIGNZ={(-1)**M2

ISIGN2=-ISIGN2
CALL DELM(M2,MSUMB2,MINC,MIND,MCMMD,MMCD¢4MCyMDoDSGNCD,

1 DB2EQO,OBMIN24NBR2)
GO TO (700,710,720 92451,NBR2

GCD HAS NONZERO REAL AND IMAG PARTS
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700 JYIMAG=JY12L+M2
TEMP2=SUMM{JYIMAG+LP)*GCD(JIGCD-1)
1 +SUMM( JYIMAG)*GCD(JGCD)

GO TO 730

GCD HAS ONLY REAL PART NONZERO
710 TEMP2=SUMM(JY1i2L+M2+LP)*GCD(JIGCD-IG2)
GO 7O 720

GCD HAS ONLY IMAG PART NONZERO

720 TEMP2=SUMM(JY12L+M2)*GCD(JGCD])

730 IF(ISIGN24LTe0) TEMP2=-TEMP2
SUM2=SUM2+CMEGA (JOMG(L,L1,0,L 2,M2}) ) *TEMP2

245 CONTINUE

250 JGCD=JGCD+IGCD*(MZMAX-M2MAXM}
SUM1=SUM1+GAB(JGAB)*SUM2

251 IF(MiIMAXM,LTel) GO TO 45C

* * * % * * 3 * * * * % *

LOOP OVER Ml NE.C

252 ISIGNi=+]

253 DO 420 M1=MIMIN,MIMAXM
JCGAB=JGAB+IGAR

ISIGNI=(-1)%*M1
ISIGN1=-ISIGN1

CALL DELM(M1,MSUMB1,MINA,MINB,MAMMB,MMAB,MAyMB,DSGNAB,

1 DB1EQO,DBMINI ,NBRY)
GO TO (74G,75C,760,430),NBRY

GABR HAS NONZERC REAL AND IMAG PARTS
740 ASSIGN 770 70 KDELO

ASSIGN 800 TO KDEL

ASSIGN 32G 70 KD

ASSIGN 8&G TO KDELMO

ASSIGN 41C TO KDEL1

GO TO 765

GAB HAS ONLY REAL PART NONZEROD
750 ASSIGN 790 TG KDELC
ASSIGN 82C 7O KDEL
ASSIGN 225 TO KD
ASSIGN 8&5 TG KDELMC
ASSIGN 420 TO KDEL1
G0 TO 765

GAB HAS ONLY IMAG PART NONZERO
76C ASSIGN 780 TO KDELO
ASSIGN 84C TC KDEL
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ASSIGN 870 TO KDELMO
ASSIGN 415 TO KDEL1

765 GO TO KM1,{255,262)

255 IF(M1.GT MIMAXP) GO TO 260
ASSIGN 290 TO KL2
MZMIN=M2L0
GO T0 262

26C ASSIGN 295 TO KLZ2
ASSIGN 23C TO KM™M2
M2MIN=MAXC(M2LO,M1~-L )

262 1F{MOD(M2MIN,2).,EQ.1) GO TO 265
ASSIGN Z01 TO KM2MIN
GG T0 270

265 ASSIGN 202 7O KMZMIN

270 SUM2=0.0DC
SUM3=0,0D0

28C JGCD=JGCDT
DO 400 LZP=LZMIN,L2MAX,2
ta2=L2e-1
M2MAX=MINO(L2,M2HI)
M2MAXM=MINC (MZMAX,L+M1)

GO TO KL2,(290,295)

290 MZMAXP=MINO(M2MAX,L-M1})
IF{M2MAXM, EQ, M2MAXP) GD TO 292
ASSIGN 305 TQ KM2
G0 70 295

292 ASSIGN 31C TO KMg

2S5 IF(M2MINLEQ.Q) GO TO 296
IF(M2MINGGToM2MAXM) GO TO 400
MZ2MINQ=M2MIN
GO TO KM2MIN,(301,302)

296 M2MINQ=1
ISIGN2=+1

M2=0, SO IMAG PART OF GCD=0
GO 7O KEMP2,(297,299)

297 JGCD=JGCD+1
CALL DELO(MSUMB2,MINC,MIND,MCMMD,DSGNCD,DBMIN2,NBR2}
GO 7O (298,299),NBR2

298 WTEMP=0OMEGA(JOMG(L,L1,M1,L2,0))*GCD(JIGCD)
IF(ISIGN1,LT.C) WTEMP=-WTEMP
JYIMAG=JY1Z2L+M]1
G2 TO KDELO,(770,790,780)

GAR HAS NONZERQO REAL AND IMAG PARTS
770 SUM2=SUM2+WTEMPXSUMM(JYIMAG+LP)

GAB HAS NONZERO IMAG PART
780 SUM3=SUM2+WTEMP*SUMM(JY IMAG)
GO TO 299
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HAS ONLY REAL PART NONZERO

SUM2=SUM2+WTEMPXSUMM(JYIMAG+LP)

IF(M2MAXM, LT, 1) GO TG 400

GO 7O 304

ISIGN2=-1

G TC 303

ISIGN2=+1

IF(M2MIN. FQeM2L0) GO TO 304

JGCO=JGCL+IGCD* (M2MIN-M2LTO)

IF(M2L0e EQe Qe ANDo (4 NOT, DB2EQC: ORe ¢ NOTo DSGNCD )}
JGCD=J6GCD-1

LOOP OVER M2e.ME.C

304

DO 39C M2=M2MINQ,M2MAXM

ISIGN2=(-1)*%M2

1

SUM
210

7S5

8C0

GAB
805

GASB
GCD
21¢

ISIGN2=-1SIGN2
JGCD=J6GCD+1IGCD

CALL DELM(M2,MSUMB2,MINC,MIND,MCMMD,MMCD,MC,MD4DSGNCD,

DB2EQC,DBMINZ,NBR2)
IF(NBR2,EQe4) GO TO 290
GO TO KM2, (305,310,330}
IF(M2.GTaM2MAXP} GO TO 330

FOR +M2

JYIMAG=JYI2Z2L+M1+M2
JYREAL=JYIMAG+LP
WTEMP=0OMEGA(JOMG(L,L2,M1,L2,M2))
IF(ISIGNIaNEe ISIGNZ2} WTEMP=-=WTEMP
DS1=4 TRUE.

DS2=4 TRUE.

DS3=4 FALSEe

ASSIGN 330 TC KBEEP

TEMP2=C.CDO

TEMP3=C,0DO

60 7O KDEL,(8C0,820,840)

GO 70 (805,815,810),4NBRZ

AND GCD HAVE NONZFRO REAL AND IMAG PARTS
TEMP2=SUMM(JYREAL)*GCD(JGCN-1}
TEMP3=SUMM(JYIMAG)*GCD(JGCD-1)
IF(.NCT,.DS2) TEMP2=-TEMP2

HAS NONZERQ REAL AND IMAG PARTS,
HAS NONZERO IMAG PART
TERM=SUMM{JYIMAG}*GCO(JGCD)
IS{4NOTeDS1) TERM=-TERM
TEMP2=TEMP2+TERM
TERM=SUMM(JYREAL }*GCD(JGCD)
IF{«NOT,.DS3) TERM=-TERM
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GAS
GCD
815

82C

GAB
GCD
825

GAB
GCD
830

GAB
835

840
GAB

GCD
845

GAB
85C
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TEMP3=TEMP3+TERM
GO TO 315

HAS NONZERO REAL AND TMAG PARTS,
HAS GNLY REAL PART NONZERGC
TEMP2=SUMM(JYREAL)I*GCD(JGCD-IG2)
TEMP3=SUMM(JYIMAG;*GCD(JGCD-1G2)
IF(«NOT~.DS2) TEMP2=-TEMPZ

GO 7O 215

GO TC (825,835,8320),4NBR2

HAS ONLY REAL PARY NONZEZRO,
HAS NONZERQO REAL AND IMAG PARTS
TEMPZ=SUMM(JYREAL}=GCD(JGCD-1)

HAS ONLY REAL PART NONZERO,
HAS NONZERO IMAG PART
TERM=SUMM(JYIMAGI*GCD{JIGCD}
IF(.NOT.DS1) TERM=-TERM
TEMP2=TEMP2+TERM

GO 7O 215

AND GCD HAVE DNLY REAL PARTS NONZERO
TEMP2=SUMM(JYREAL)*GCD{JGCD-1G2)

GO TO 315

GO TO (845,855,850)+NBR2

HAS ONLY IMAG PARYT NONZERG,

HAS NONZERO REAL AND IMAG PARTS
TEMP3=SUMM(JYIMAG)*GCD(JIGCD-1)
IF(<NOT.DS2) TEMP3=-TEMP3

HAS ONLY TMAG PART NONZERO, GCD HAS NONZERO IMAG PART
TERM=SUMM(JYREAL }*GCD(JGCD)

IF(4,NOT«DS2) TERM=-TERM

TEMP3I=TEMP3I+TERM

G2 TO 32¢

HAS ONLY IMAG PART NONZERC,

HAS ONLY REAL PART NONZEROD
TEMP3=SUMM{JYIMAG)I*GCD(JIGCD-1G2)
IF(.NOT4DS2) TEMP3=-TEMP3

GO 7O 320

SUM2=SUM2+WTEMP*TEMP2

GC TO KD,(320,325)
SUM3=SUM3+WTEMPTEMPS

GO TO KBEEP,{330,3¢0C)

FOR —-M2
MZ2MM1=M2-M1
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JYIMAG=JY12L+IABSEM2MML )
JYREAL=JYIMAG+LP
WTEMP=0OMEGA(JOMG(L,L1,M1,L2,-M2))
IF(M2MM1) 340,335,345

335 WTEMP=WTEMP*SUMM{JYREAL)
IF(ISIGN2.LT+0) WTEMP=~WTEMP
GO TC KDELM0,(86G,865,870)

860 GO TO (237,239,338),N8BR2

GAB AND GCD HAVE NONZERO REAL AND IMAG PARTS
227 SUM2=SUM2+WTEMPXGCD(JGCD-1)

GCAB AND GCD HAVE NONZERO IMAG PARTS
238 SUM3=SUM3+WTEMP*GCD{JGCD)

GO 70 3290
865 GO TO (326,229,3G0),NRR2

GAB AND GCD HAVE NONZERQ REAL PARTS
239 SUM2=SUM2+WTEMP*GCD(JIGCD-IG2)
GO TO 390
8703 GO0 TO (338,390,338),NBR2
340 IF(ISIGN1.LTeO) WTEMP=-WTEMP
DSi=, FALSE.
DS2=+ TRUFE,
G3 TO 359
345 IF(ISIGN24LTeO) WTEMP=-WTEMP
DSi=e TRUE,
DS2=4 FALSE.
ASSIGN 290 TQ KREEP
GO TQ 795
290 CONTINUE
400 JGCD=JGCD+IGCD*(M2MAX-M2MAXM)

SUM2 IS MULTIPLIED BY THE REAL PART OF GAB
SUM2 IS MULTIPLIED BY THE IMAG PART OF GAB
GO 70 KDEL1,(410,420,41%)
0 SUMI=SUM1+SUM2*GAB(JGAB~1)
415 SUM1=SUM1+SUM3*GAB(JGAB)
GO TD 43¢0
420 SUM1=SUM1+SUM2*GAB{JGAB-IG1)
430 CONTINUE

* * % 2 % * * * % %* *

450 JGAB=JGAB+IGAR¥(MIMAX-MIMAXM)
A(JA)Y=SUM1+SUM1
IF(MOD(LIMIN,2)eEQe Q) A(JA)=~A(JA)

INTRODUCE FACTOR (-1)**L1



181

460 CONTINUE
470 JGCOP=JGCDP+JGCLD
480 JGABP=JGARP+JGABD
NA=JA
RETURN
END

PPOGRAM 13: GECM3C

GEOM3C CALCULATES ARRAY A, WHICH IS INDEPENDENT OF ZETAS,
FOR INTEGRALS (AALICD) AND (AAlAD)

ARGUMENTS LAP MAPLETCs ARE DORBITAL QUANTUM NUMBERS
LTOP=LARGEST VALUE ATTAINED BY (LA+LB+LC+LD)
NTYPE=NUMBER OF CENTERS
NGAB=ONE LESS THAN THE SURBSCRIPT OF THE FIRST

GAB FOR LAJLBsMA,MB
NGCD=0ONE LESS THAN THE SUBSCRIPT QOF THE FIRST
GCD FOR LC,LDyMC,MD
NA=STZE OF ARRAY A (CALCULATED BY GEOM)
INDICES PUN IN THIS ORDER, WITH LAST ONE CHANGING
FASTEST - SIGMAl,ALPHA2,BETA2,SIGMAZ2,

LAMBCAZ,,L

asleleleNaNeNaNoNeYeNaNeXa ke

SUBROUTINE GEOM3C{SUMM,0OMEGA,LAP,MAD,LBP,MBP,LCP,MCP,
1 { DP,MDP ,LTOP,N4,NTYPE,NGAB,NGCD)
IMPLICIT REAL*8(A-C,E~H,N-Z)4LOGICAL*1(D)
COMMON/AF/SHAM(30) yGAB(340) 4GCDI(34G),4(3548)
DIMENSTION SUMM(1),0MEGA(1)
IF(NTYPE.LT.3) GC TO 2
ASSIGN &7 TC KNTYPE
GO TO 3
2 ASSIGN 48 TO KNTYPE
LAM2MX=1
3 IT=LTOP+1
LT1SQ6=6*IT*IT
IF(LAP.LT.LBP) GO TO 5
LA=LAP
MA=MAP
LB=LBP
MB3=MRP
63 TC &
LA=LBP
MA=MBO
LB=LAP
MB=MAP
C NOW LA.GE.LR

\n
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& MILO=TABS(IABS(MA)-TABS(MB))
MIHI=TABS(MA)}+TABS{(MB)
IF(MOD(MLL0,2)eEQeQ) GO TO 7
ISTGNi=-1
G0 TO 920

7 ISIGN1=+1

920 IF(M1LO.EQeMiHI} GO TO S4C
DM1 EQ=e FALSE.
G0 TO 1¢
94C DM1EQ=e TRUE
1C IF(LCP.LTL,LDP) GO TO 15
LC=LCP
MC=MCP
LD=LDP
MD=MDP
GO TG 1é
15 LC=LDP
MC=MDP
LD=LCP
MD=MCP
NOW LCeGEesLD

16 MCMMD=IABS(MC)-IABS({MD)
IF(MCMMD) 17,184,190
17 MCOMAX=IARS(MD)
MCDMIN=IABS(MC)
MCDDIF==MCMMD
GO TO 20
18 MCDMAX=IABS{MC)
MCOMIN=MCDMAX
MCDDIF=0
G0 TO 20
19 MCDMAX=TABS(MC)
MCDMIN=IABS(MD)
MCDDIF=MCMMD
MCDMAX=MAXO(IMC|,I1MD})
MCDMIN=MINO({MCl,IMD})
MCDOIF=MCDOMAX-MCOMIN

20 LAMLB=LA-LSB
LCMLD=LC~LD
LALB=LA+LS
LCLD=LC+LD
LDMC=LD+IABS(MC)
LCMD=LC+IABS(MD)
MMCD=TABS(MC)+IABS(MD)
LOMMC=LD~T1ABS(MC)
LCMMD=LC~TABS(MD)
MOCi=MOD(LALB+M1LG,2)
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MOD2=MOD (LCLD+MMCD,2)
IF(MA,LT.0) GO TO 507
IF(MB.LTe D) GO TO 506
GO TO 208

50¢ DSGMAB=4,FALSE.
GO 70 510

507 IF(MB.LT42) GO TCO
GO TO 506

508 OSGNAB=e TRUE,

C DSGNAB=,TRUE, IFF MA AND MB HAVE SAME SIGN (0 IS +)

m
o
(4]

510 IF(MC.LTe0Q) GO TO 517
IF(MD,LT-0) GO TQC 51¢
GO TO 518

516 DSGNCD=,FALSE.
GO TO 52¢C

517 IF(MDelTe0) GO TO 518
GO 7O 51¢

518 DSGNCD=,TRUE.
C DSGNCD=4TRUEe IFF MC AND MD HAVE SAME SIGN (0 IS +)

£20 IF{MILO.5Q.0) GO TO 522
ASSIGN 253 TO KAML
DM10ON=. FALSE.

GC T0 525

522 IF(DSGNAB) GO TG 523
ASSIGN 43C TO KAM1
DM1ON=¢ TRUE.

GO 7O 525

523 ASSIGN 240 TO KAM1

DM10ON=, FALSE,

DM10ON=, TRUE. IFF MA, EQ.’MB. NE.O

OO0

525 CONTINUE
JA=0
JGABP=NGAR
IAZ2MIN=8-LD
TA2MAX=8+LC
MODAB=MOD(LALB,2)
L1L O=MAXC(LAMLB, M1LO+MOD1)
IF(L1ILO«GE«M1HI) GO TO 530
DLIGE=eFALSE.
GO TO 535
520 DL1GE=.TRUE.
535 CONTINUE
c
C ALPHA1=BETA1=0 BECAUSE A=B

c
ISIMIN=LILO+]
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ISIMAX=LALB+1

DO 480 IS1=ISIMIN,ISIMAX,2
JGCOP=NGCD

IS1G1=1Si-1

ISiPi=T1Si+1

IF(DMIEQeORs ISIGI LT« MIHI} GO TOQ 25
IF(DL1GE) GO TO 23
IF(DM1ON) GO TO 22
ASSIGN 100 TO KJ1
JGTi=(MIHI+MOD1+L1L0)/2
JGABD=TS191-JGT1
GO TO 28
ASSIGN 110 70 KJ1
JGABD=(ISIGI-MIHI-MOD1) /241
GO TO 28
23 IF(DMION) 60O TO 256
ASSIGN 120 TO KJ1
JGABD=1IS1P1~L1LGC
GG 7O 28
2% IF(DMION) GO TO 27
26 ASSIGN 8GC TO KJ1
JGABD=(ISIGL-L1L 01 /2+1
GO TO 28
27 ASSIGN 73 TO KJ1
JGABD=0
28 CONTINUE
C JGABD=NUMBER OF FUNCTIONS GAB FOR GIVEN ISIG1

C

N
[}V

DO 470 IA2=TIA2MIN,IAZMAX
IALPH2=1AZ~-8
LLACD=TABS(LCMLD-IALPHZ)
MORCC=MOD(LLACD, 2)
M2HIT=MING(LDMC+IALPHZ2,LCMD~TIALPHZ)
IF(IALPHZ24.EQe0) GO TO 620

C

C BETA2,NE.O
1GCD=2
162=1
DB2EQC=¢ FALSE.
ASSIGN €40 TO KB2
ASSIGN 242 TO KBOOQ2
ASSIGN 297 TO KBMO2
GO TO €2¢

C

C FIRST VALUE OF BETA2=0

€20 IGCD=1

1G2=0

DB2EQO=s TRUE,.
ASSIGN 630 TQO KB2
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&27

€28
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IF(DSGNCD) GO TO 622
ASSIGN 680 TD KBOO2
ASSIGN 299 TO KBMO2
GO TO 624

ASSIGN 242 TO KBOC2
ASSIGN 297 TO KBMO2

CONTINUE

IB2MIN=TABS(IALPHZ )+1

1B82MAX=LCLD-LLACD+1

DO 470 IB2=IB2MIN,I82MAX,2

IBETAZ=1B2~1

IS2MAX=LCLD-IBETAZ2+]

DBMINZ2=4 FALSE,

IF(MCOMINsGTLIBETA2) DBMIN2=«TRUE,

MDIFB2=MCODIF~IBETA2

MSUMB2=MMCD-IBETAZ2

MINC=MINC(LCMMD-TALPH?, IBETA2+MCMMD)

MINO=MINO(LDMMC+IALPH2, IBETAZ-MCMMD}

L2L0=MAXO(LLACD,MDIFB24#M0OD2)

ISZMIN=L2L0+1

M2L0=MAXQ(0,~LDMMC~TALPH2 ,~LCHMD+IALPH2,MCIFB2)

DELCD=.TRUE.

IF{M2L0.EQ.0} GO TO 627

M2L0OMi=M2L0-1

MZ2MINP=M2L 0

DMODM2=¢ FALSE.

IF(MOD(M2L042)eEQ. 0} DMODMZ=, TRUE.

GO TO &28

M2L0OM1=-1

M2MINP=1

M2HI=MING(M2HIT, IBETA2+MMCD)

LLOWP=MAXO(MI1LO-M2HI ,M2L0-M1HI)

IF(MOD(IABS(LLOWP),2)eNEs IABS{(MODAB~MODCD) }
LLOWP=LLOWP+1

IF(L2L0, LTeM2HI) GO 70O 31

ASSIGN 23 TO KG2

ASSIGN 160 TO KJ2

GO 70 32

ASSIGN 34 TO KG2

L2LOF=L2L0*(L2L0-2)

GO TO KB24(£304635,640)

C BETA2=0

630

c

IF(M2L0s EQe O ANDe « NOTo DSGNCD) DELCD=e FALSEe
ASSIGN €35 TO KB2
GO TO 640

C BETA2 NO LONGER 0

635

ASSIGN 242 TO KBCO2Z
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ASSIGN 297 TO KBMC2
ASSIGN 640 TO KBZ2
I1GCD=2

1G2=1 .

DB2EQO=¢ FALSE.

NQ 470 IS2=1S2MIN,IS2MAX,2
1S1G2=1S82-1
1S2P1=1S2+1

JGCDOD=M2LOM1*(IS2P1-L2L0O)
GD TO KG2, (33,34)
JT=M2HI*(IS2P1-L2L0)/2

GO TO 38

IF(ISIG2.GTe«M2HI)} GO TO 32
JT={ISIG2*IS2P1-L2L0OF)/4
ASSIGN 200 TO KJ2

60 TO 38

IF{MODCD.EQe MODD(MZHIL2)) GO TC 3¢
IT=1

GO 10 37

I1T=0
JET2=1T+L2LOF+M2HI*(M2HTI+2)
JT=(2%IS2P1%M2HI-JGT2)/&
ASSIGN 180 TO KJ2
IF(DBZEQO) GO TO 650
IF{(M2L0L.EQ.D) JGCND=JGCDD/2
JGCDD=2*JT-JGCDD

GO TO 660

IF(DELCC)Y JT=JdT-JGCDD/2
JGCDD=3T

JGCDD=NUMBER OF FUNCTIONS GCD

6¢6Q

FOR GIVEN SET (IALPH2,IBETAZ2,ISIG2)

LLOW=MAXO(L1LO-1SIG2,L2L0-ISIG1,LLOWP)+1
LMAX=ISIG1+1IS2

LMCD=MOD(LMAX,2)

GO TO KNTYPEL(47,48)

INTEGRAL IS TYPE (AAICD) -

LAMBDA2 RUNS FROM O TO (SIGMA1+SIGMAZ)

47 LAMZMX=LMAX

STMNT 47 IS SKIPPED IF INTEGRAL IS TYPE (AA|AD) -

48

LAMBDAZ2=0
DO 46C LAM2=1,LAM2MX

LAMRDZ2=LAMZ2-1
JY1Z=(LT1SQ6-{LAM2-2)*(2%LAMBD2-1) }*LAMBD2/6

l -LAMBD2*%LAMBD2
IF(LLOW.LT.LAM2) GO YO 50
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LMIN=LLOW

GO TG 70

IF(MOD(LAM2,2)e NEs LMOD) GO TO 60
LMIN=LAM2

G0 TO 70

EMIN=LAMZ+1

LMIN=MAXOC (LAMBDAZ y M1LO-M2HT 4 M2LO-M1HI,L1LO-SIGMAZ,

70

L2LO~-SIGMAL)
(+1 IF NEEDED TO MAKE (LMIN+SIGMA1+SIGMA2) EVEN) +1

DO 460 LP=LMIN,LMBX,2
L=LP-1
JY12L=JY12+L*L

SUBSCRIPT FOR ARRAY SUMM = JY12L +M1 +0R- M2

110

120
AT

(+L+1 IF REAL PART)

LMM2LO=L-M2L0

LPMZ2HI=L+M2HI
LIMIN=MAXO(L1LO,L2L0-L,L-ISIG2)
LIMAX=MINC(YS1,L+1IS2)
L1DIF=LIMIN~LILOD

IF(L1CIF.NE.O) GC TO 75
JGAR=JGABP

GO 70 150

GO 7O KJ1,(73,80,100,1210,120)
JGAB=JGABP+L1IDIF/2

GO T0 180

IF(LIMIN-2.LTeMiHI) GO 7O 80
JGAB=JGABP+LIMIN-JGT1

GO TO 150

IF (LIMIN=-2.LTaMIHI) GO TO 73
JGAB=JGABP+(LIMIN-MIHI-MOD1}Y/2
GG TO 150

JGAR=JGABP+LIDIF
THIS POINT JGAB IS 1 LESS THAN THE INDEX FOR THE FIRST

GAB FUNCTION 70 BE USED

120

JA=JA+]

SUM1=0,0DC

LIMIN=LIMIN+]

DO 450 LiP=LIMIN,LIMAX,2
Li=L1e-1

L2MIN=MAXO(L2LO, IABS(L-L1})
L2MAX=MINQ(ISZ2,L+L1P)
L2DIF=L2MIN-L2LO

IF(L2DIF«NE«0O) GO TO 155
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JGCDT=JGCDP
GO TO 235
155 JGCOT=M2LOM1*L2DIF
GO 70 KJ2,(160,180,200)
160 JT=M2HI*L2DIF/2
GO TO 205
180 IF(L2MIN-24.LE>-M2HI) GO TO 20C
JT=(2%L2MIN*M2HI-JGCT 2}/ 4
GO TO 2C5
200 JT=(L2MIN*(L2MIN=-2)-L2LOF)/4
205 IF(DBZ2EQC) GO 7O 210C
IF(M2L0.EQe0) JGCDT=JGCDT/2
JGCOT=JGCOP+2*JT-JGCOT
GO TO 228
21C IF(DELCDY J7=JT-JGCDT/2
JGLDT=JGCDP+JIT
AT THIS POINT JGCDT IS 1 LESS THAN THE INDEX FOR THE
FIRST GCD FUNCTICON TO BE USED

235 SUM2=0.,0D0
LZ2MIN=L2MIN+1
GO TO KAM1,(240,253,430)

* * = * * . X ¥ * * * ¥* ¥ ¥ E

M1=C, SQ IMAG.PART 0OF GAB=C

240 JGAB=JGAB+1

241 JGCD=JGCOT
DC 250 L2P=L2MIN,L2MAX,2
LZ=L2p-1
M2MAX=MINO(L2 ,M2HI)
M2MAXM=MINO{M2MAX,L)

M2=C, SO IMAG. PART OF GCD=¢C
IF(M2L0,EQ.0) GO TO KBO02,(242,680)
IF{M2MINP,GT« M2MAXM) GO TO 250
IF(« NCT.OMODM2) GO TO 243
ISIGN2=-1
GO TO 244

242 JGCD=JGCD+1

CALL DELO(MSUMB2 MINC,MIND,MCMMD,DSGNCD,DBMINZ,NBR2)

GO TO (£€75,680),NBR2

€75 SUM2=SUM2+0OMEGA(JOMG(L,L1,04L2,0))*SUMM(JY12L+LP)
1 *GCL(JGCD)I*0.5D0C

68C IF(M2MAXMa.LTel) GO 7O 285G

LODP OVER MZeNECoWITH M1.EQeO
242 ISIGN2=+1
244 DO 245 M2=M2MINP,M2MAXM
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JGCD=JGCD+IGCD
ISIGN2=(-1)*%M2
ISIGN2=-ISIGN2
CALL DELM(M2,MSUMB2,MINC,MIND,MCMMD,MMCD,MC+MD,DSGNCD,
1 DB2EQC,DBMIN2,NBR2)
GO TO (700,710+7204245) 4NBR2

GCD HAS NONZERQO REAL AND IMAG PARTS
700 JYIMAG=JY12L+M2
TEMP2=SUMM(JYIMAG+LP )*GCD(JGCD-1)
+SUMM{JYIMAG)I*GCD(JGCD)

-

GO TO 720

GCD HAS ONLY REAL PART NONZERC
710 TEMP2=SUMM(JY12L+M2+LP)*¥GCD(JIGCD~IG2)
GO TO 730

GCD HAS ONLY IMAG PART NCNZERO

72C TEMP2=SUMM(JYi2L+M2)=*GCD(JGCD}

730 IF(ISIGNZ2.LTe0) TEMP2==TEMP2
SUM2=SUM2+0OMEGA(JOMG(L,L1,04LZ2,M2) VXTEMPZ

24Z CONTINUE

250 JGCD=JGCD+IGCD*(M2MAX-M2MAXM)
SUMI=SUM1+GAR{JGAB)*SUM2
GO TO &432C

* % * ok kK 0k X %k % * % * % *

M1,NE.O

252 MI=M1LQO

SUM FOR M1=M1LO={{MA|-IMBI{
ASSIGN 430 TO KM1
JGAB=JGAB+1

255 IF(M1.GT.LMM2LG) GO TO 260
ASSIGN 2SC TO KL2
M2MIN=M2LO
GO TO 262

260 ASSIGN 295 TO KL2
ASSIGN 330 TGO KM2
M2MIN=MAXC(M2L0,M1-L)

262 IF(MOD(M2MIN,2).EQ.1) GO TO 265
ASSIGN 301 TO KMZMIN
GO TO 270

265 ASSIGN 202 TO KM2MIN

270 SUM2=0,0D0
SUM2=0, 000

280 JGCD=J4GCDT
D0 400 L2P=L2MIN,L2MAX,2
L2=L2pP-1
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M2MAX=MINO(L24M2HI)
M2MAXM=MINC (M2MAX,L+M1)
GO TO KL2,(29C,4255)

29C M2MAXP=MINO(M2MAX,L-M1)
IF{M2MAXM, EQe M2ZMAXP) GO TO 292
ASSIGN 205 TO KM2
GO TO 295

292 ASSIGN 21C TO KM2

295 IF(M2MIN.EQe.O) GO YO 29¢
IF(M2MIN.GTe M2MAXM) GO TO 400
MZMINQ=M2MIN
GO 7O KM2MIN,(3C1,302)

29¢ M2MINQ=1
ISIGNZ2=+1

M2=0, SO IMAG PART QOF GCD=0
GO TO KBM02,(297,299)

297 JGCD=JGCD+1
CALL DELO{MSUMB2 ,MINC,MIND,MCMMD,DSGNCD,DBMIN2,NBR2)
GO TO (298,429S),NBR2

258 WTEMP=0OMEGA(JOMG(L,L1,M1,L2,0))*GCD(IGCD)
IF(ISIGNILLTo0) WTEMP=-WTEMP
JYIMAG=JY12L +M3
IF{DSGNAB) GO 70O 7¢C

GA8 HAS ONLY IMAG PART NONZEROD
SUM3=SUMI+WTEMP:SUMM(JY IMAG)
GO TG 299

. GAB HAS ONLY REAL PART NONZERO

TS0 SUM2=SUM2+WTEMP*SUMM(JY IMAG+LP)
299 IF(MZ2MAXM,LT.1) GO TO 40C
GO TO 304
301 ISIGN2=-1
GO TO 303
202 ISIGNZ2=+1
302 JIF(M2MINLEQ.M2L0) GO TO 3C4
JGCD=JGCO+IGCD*{ M2MIN-M2LO)
IF(M2L04 EQ. 00 ANDW (4 NCT, DB2EQDOs ORe « NOTo DSGNCD))
1 JGCD=JGCD-1

LOOP OVER M2,NE.O
204 DO 390 M2=M2MINQ,M2MAXM
ISIGN2=(-1)*%*M2
ISIGN2=-TSIGN2
JGCD=JGCD+IGCD
CALL DELM{M2,MSUMBR2,MINC,MIND,MCMMD,MMCD,MC,MD,DSGNCD,
1 DB2EQC,DBMIN2,NBR2)
IF(NBR2.EQe 4} GC TQ 29C
GO T KM2, (305,310,330)
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IF(M2,GT,M2MAXP) GO TO 330

FOR +M2
JYIMAG=JY1LZ2L +M1+M2
JYREAL=JYIMAG+LP

ISIGN1I=(-1)**M1

GAB
GCD
825

GAB
820

GaB
835
218

840

GAR

GCN
B4t

GAR
GCD
85C

GAB
GCD

855

WTEMP=0OMEGA(JOMG(L,L1,M1,L2,M2))
IF(ISIGNI NEe ISIGN2) WTEMP=-WTEMP
DS1=,TRUE.

DS2=«TRUE.

DS3=4 FALSES

ASSIGN 230 TO KBEEP

TEMP2=0. 000

TEMP3=0, CDO

IF(.NOT.DSGNABY GO 70O 840

GO TO (825,835,820),NBR2

HAS OMLY PEAL PART NOMZERN,
HAS NONZERO REAL AND IMAG PARTS
TEMP2=SUMM(JYREAL)*GCD(JGCD-1)

HAS ONLY REAL PART NCNZERO, GCD HAS NONZERO IMAG PART
TERM=SUMM{JYIMAG)*GCD(JIGCD)

IF{«NOT-DS1) TERM==TERM

TEMP2=TEMP2+TERM

GO 70O 215

AND GCD HAVE ONLY REAL PARTS NONZERO
TEMP2=SUMM(JYREAL}*GCD(JGCD-1G2)
SUM2=SUM2+WTEMP*TEMP2

GG TC 325

GO TO (845,855,8E50) 4NBR2

HAS ONLY IMAG PART NONZERQ,

HAS NONZERO REAL AND IMAG PARTS
TEMPA=SUMM{JIYIMAGI*GCD(JIGCD-1)
IF(«NOTeDSZ) TEMP2=-~TEMP3

HAS ONLY IMAG PART NONZERO,
HAS NONZERQ IMAG PART
TERM=SUMM(JYREAL)*GCD(JGCD)
IF(aNOT.ES3) TERM=-TERM
TEMP3=TEMP3+TERM

G2 TO 220

HAS ONLY IMAG PART NONZERD,

HAS ONLY REAL PART NONZERO
TEMP3=SUMM(JYIMAGI*GCD(JGCD-1G2)
IF(«NOT.DS2) TEMP3=-~TEMP3
SUMR=SUMZ4+WTEMP*TEMP3
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325 GO 7O KREEP,(329,39C})

C SUM FQR -M2

320 M2MM1=M2-M1
JYIMAG=JY12L+IABS{M2MM]1)
JYREAL=JYIMAG+LP
WTEMP=OMEGA(JCOMG{L,L14M1,0L2,-M2})
IF(M2MM1) 340,335,345

335 WTEMP=WTEMP*SUMM(JYREAL)
IF(ISIGNZ2eLTe0) WTEMP=-WTEMP
IF(«NOT. DSGNAB) GO TC 870
GO 7O (329,239,390}, NBR2

C GAB AND GCD HAVE NONZERC REAL PARTS
329 SUM2=SUM2+WTEMPXGCD(JGCD-1G2}
GO TO 320
870 GC TO (238,290,338)4NBR2

C GAR AND GCD HAVE NONZERO IMAG PARTS
238 SUM3=SUM3+WTEMPxGCD(JGCD)
GO TO 390
240 IF(ISIGN1.LT,0) WTEMP=—WTEMP
DS =, FALSEe
DS2=, TRUF.
GO TC 350
348 IF(ISIGN2LT,C) WTEMP=-WTEMP
DS]. e TRU Es
DS2=¢ FALSE.
DS3=. TRUE,
ASSIGN 290 TQ KBEEP
GO TG 7SS
29C CONTINUE
400 JGCO=JGCD+IGCD*(MZMAX-M2MAXM)

[§8]
n
[ ]

SUM2 IS MULTIPLIED BY THE REAL PART OF GAB
SUM3 IS MULTIPLIED RY THE IMAG PART DF GAB
IF(DSGNAB) GG TO 420
SUM1=SUM1+SUM3%GAB( JGAB)
GO TO KM1,(420,450)
420 SUM1=SUM1+SUM2*GAB(JGAB)
GO TN KM1,(43C,450)
420 JF{DM1FQeCR.L1+LT.M1HI) GO TO 450
JGAB=JGAB+1
IF(MIHI.GTLLPM2HI) GO TO 450
M1=M1HI
ASSIGN 450 TC KM1
C SUM FOR MI1=MIHI={|IMAl+{MB]|
GO TO 25%

aNeNe]

c
C*x *x % x % % * *x %k % %
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45C CONTINUE
A(JA)=SUMI+SUM]
IF{MCD(LIMIN, 2% EG.C) A(JA)I==A(JA)
INTRODUCE FACTOR (-1)%*L1

460 CONTINUE
470 JGCDP=JGCDP+JGCDD
480 JGABP=JGABP+JGABD
Na=JA
RETURN
END

PROGRAM j4: GEOM2C

eNeNeNeNeNaNeNeNeXeNe

c
C

GEOM2C CALCULATFS ARRAY A, WHICH IS INDEPENDENT OF ZETAS,
FOR INTEGRAL (AA{CC)
ARGUMENTS LAP,MAP,ETCe ARE CRBITAL QUANTUM NUMBERS
NGAR=0ONE LFSS THAN THE SURSCRIPT OF THE FIRST
GAB FOR LA,LB,MA,MB
NGCD=0NE LESS THAN THE SUBSCRIPT OF THE FIRST
GCD FOR LC,LDyMC,MD
NA=STZE OF ARRAY A (CALCULATED BY GEOM)
INDICES RUN IN THIS ORDER, WITH LAST ONE CHANGING
FASTEST - SIGMA1,SIGMA2,L

SUBROUTINE GEOM2C({ SUMM, GMEGA,LAP,MAP,LBP,MBP,LCP,M(P,
3 LDP,MDP,NA,NGAB,NGCD)
IMPLICIT REAL*8(A-C,E-H,0-Z),LOGICAL*1(D)
COMMON/AF/SHAM(30) ,GAB(340),GCD(3403,A(3548)
DIMENSION SUMM{1),0OMEGA(1}
IF{LAP,LT.LBP) GO 7O ¢
LA=LAP
MA=MAP
LB=LBP
MB=MBP
G3 TC 6
S LA=LBP
MA=MBP
LB=LAP
MB=MAP
NOW LA.GE.LR

& MILO=IABS({IABS(MA)-TIABS(MB))
MIHI=TABS{MA)+IABS(MB)
IF(MOD(MILO,2).EQe) GD TO 7
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ISIGN1=-1
GO TO 920
7 ISIGN1=+1

920 IF(MILO,EQ.MIHI} GO TO 940
DM1EQ=a FALSE.
GO TO 10

940 DM1EQ=.TRUS,

10 IF(LCP.LT.LDP) GO TO 15
LC=LCP
MC=MCP
LD=LDP
MD=MCP
GO TO 1¢

15 LC=LDP
MC=MDP
LD=LCP
MD=MCP

C  NOW LCeGE.LD

16 M2L0=TABS(IABS(MC)~-IABS(MD})
M2HI=TABS{MC)+IABS(MD)
IF(MOD(M2L0,2).EQ.0) GO TO 17
ISIGN2=-1
GO T0 970

17 TISIGN2=+:%

970 IF(M2L0.EQ.M2HI) GO 7O S90
DM2EQ=o. FALSE.
GO TC 20

990 DM2EQ=.TRUE,

20 LAMLB=tLA-LB
LCMLD=LC-LD
LALB=LA+LB
LCLD=LC+LD
MOD1=MOD(LALB+M1LO,42)
MOD2=MOD(LCLD+M2L0,2)
IF(MA.LT.0) GO TO 507
IF(MB.LT.C) GO TO 50¢
GO TO 508

50& DSGNABR=.FALSE.
GG TO 510
€07 IF(MBe.LTe0O) GC TO 5C8
GO TO 506
5C2 DSGNAB=, TRUE,
C NSGNAB=.TRUE. IFF MA AND MB HAVE SAME SIGN (0 IS +)

BiC IF(MC,LT.C) GO 70O 517
IF{MDsL7.0) GO TO 51¢&
GO TC 518

51¢ DPSGNCD=.FALSE.
GO TO 52¢
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517 IF(MDeLTe0) GO 7O 5i8

GO TO 51e¢

518 DSGNCD=. TRUE.
DSGNCD=, TRUE. IFF

520 IF(M1L0.EQe0C)

g22

523

DM10ON=e TRUE.

ASSIGN 252 TO
DM10N=,FALSE,
GO TC 52°%
IF(DSGNAB) GO
ASSIGN 430 TG
DM1ON=, TRUE.
G0 70 52°¢
ASSIGN 24C 7O
DM1ON=, FALSF.

525 IF(M2L0EQe D)

527

DM2CN=, TRUE.

ASSIGN 244 TC
ASSIGN 200 TC
DM2CN=, FALSE.
GO TO 529
IF(DSGNCD) GO
ASSIGN z48 TOQO
ASSIGN 3¢C 70
DM20N=¢ TRUE.
GO TO 529
ASSIGN 242 70
ASSIGN 296 TQ
DM20ON=s FALSE.

£29 CONTINUE

530

JA=0
JGABP=NGAB

MC AND MD HAVE SAME SIGN (0 IS +)

GO TC 522
KAML

T0 523
KAML

KAM2

IFF MA. EQ.-MBaNE.C

GD T &27
KAGM2
KAMM?

TO 528
KAOM2
KAMM2

KACM2
KAMM2

IFF MC.EQ.'MD-NE.O

MODAB=MOD(LALR,2)
LiLO=MAXO(LAMLB,M1LO+MOD1)
IF(L1LO.GE«MIHI) GO TO 530

DL1GE=4FALSE,
GO TC 53¢
DL1GE=4 TRUE,

535 CONTINUE

ALPHA1=BETA1=0 BECAUSE A=8

ISIMIN=LILO+1
ISIMAX=LALB+1

MODCD=MOD(LCLD,2)
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L2LO=MAXC{LCMLD; M2LO+MOD2)
IF(L2L0.GE«M2HT) GO TO 630
DL2GE=,FALSE,
GO TO 6325
&30 DL2GE=, TRUE,
635 CONTINUE
IS2MIN=L2L0+1
1S2MAX=LCLD+1
LLOWP=MAXO (M1LO-M2HI 4 M2LO~M1HT)
IF(LLOYP.LT.0) GO TO 640
TF(MOD(IABS(LLOWP) ,2).NEs IABS{MODAB~MODCDY )
1 LLOWP=LLOWP+1
60 TO 540
640 1F (MODAB.EQe MODCD) GC TO 645
LLOWP=1
G0 TO 540
645 LLOWP=2%MOD(IABS(LLOWP),2)
540 DO 480 ISI=ISIMIN,ISIMAX,2
JGCDP=NGCOD
ISIG1=IS1-1
IS1P1=IS1+1

IF(DMIEQeOR-ISIG1,LToM1IHI} GO TO 25
IF(DLIGE) GO TO 23
IF(DMiION) GO 70O 22
ASSIGN 10C TO KJ1
JGT1=(MIHI+MODI+LILO)/2
JGABD=IS1P1-~JGT1
GO TO 28
22 ASSIGN 110 TO KJi
JGABD=(ISIGI-MIHI-MOL1)/2+1
GO TO 28
IF(DMION) GO TO 2¢é
ASSIGN 120 70O KJ1
JGABD=IS1P1-L1LO
GO TO 28
2% IF(DMION) GC TO 27
26 ASSIGN 80 TO KJl
JGABD=(ISIG1-LILO})/2+1
GG TO 28
27 ASSIGN 73 70 KJ1
JGABD=0
28 CONTINUE
C JGABD=NUMBER COF FUNCTIONS GAB FOR GIVEN ISIGI
c
C ALPHA2=BETA2=0 RECAUSE C=D
c

Ny
(V3]

DO 470 IS2=1S2MIN,ISZ2MAX,2
1S162=1S2-1
152P1=1S2+1
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IF(DM2EQeCRs ISIG2,LToeM2HI) GO TO 35
IF(DL2GE) GO 70O 33
TF(DM20ON) GO TO 32
ASSIGN 180 TO KJ2
JET2=(M2HI+MOD2+4L2L0) /2
JGCOD=1IS2P1-JCT2

GO TO 38

ASSIGN 120 TO KJ2
JGCOD=(ISIGZ2-M2HI-M0OD2) /2+1
GO 7O 28

IF{DM2CN} GO 70 36
ASSIGN 200 TO KJ2
JGCDD=1S2P1~-L2L0

GO TO 38

IF(DM20ON) GO TO 37
ASSIGN 16C TO KJ2
JGCOD=(1SIG2-L2L0)/72+1
GO Tg 38

ASSIGN 153 TO KJ2
JGCDD=0

CONTINUE

JGCDD=NUMBER OF FUNCTIONS GCD FOR GIVEN ISIG2

€60

LLOW=MAXO(L1LC-ISIG2,L2L0-ISIG1,LLOWP)+1

LLOW=MAXO (O, MILO-M2HI 4M2L0~-MIHI,L1LO-SIGMA2,L2{0-SIGMAL)

{+1 IF NEEDED TO MAKE (LMIN+SIGMA1+SIGMA2) EVEN)+1

LMAX=TISIG1+41S2

DO 460 LP=LLOW,LMAX,2
L=LP-1

Jylat=L=L

SUBSCRIPT FOR ARRAY SUMM = JY120L +M1 +0OR- M2

73

75
g

100

{+L+1 IF REAL PART)

LMM2LO=L-M2L0

LPM2HI=L +M2HI
LIMIN=MAXC(LLILO,L2LO-L,L~ISIG2)
LIMAX=MINQ(IS1,4L+1S2)
LIDIF=LIMIN-L1ILO

IF(LI0IF.NE.0O) GO TO 75
JGAB=JGABP

GO 70 150

GO TO KJ1,¢(72,8C,100,11C,120)
JGAB=JGABP+LIDIF/2 :
GO TO 150

TF{LIiMIN-2,LT,MIHI) GO 7O 8C
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JGAB=JGABP+LIMIN-JGT

GO 7O 150

IF (LIMIN-2.LTeM1HI) GO TO 73
JGAB=JGABP+(LIMIN-MIHI-M0OD1) /2
GO TC 150

JGAB=JGABP+LIDIF

THIS POINT JGAB IS 1 LESS THAN THE INDEX FOR THE FIRST

GAR FUNCTION TO BE USED

JA=JA+1

SyMi=C. CDO

LIMIN=LIMIN+1

DO 450 L1°=LIMIN,LIMAX,2
Li=L2P-1
L2MIN=MAXO(L2LO,TABS(L-L1})
L2ZMAX=MINO(IS2,L+L1P)
L2DIF=L2MIN-L2LO

IF(L2DIF.NE,0O) GO Tn 155
JGCOT=JGCoP
G0 TO 235

GO TO KJ2,(152,160,180,190,200)

JGCDOT=JGCOP+L2DIF/2

GO TO 22%&

IF(L2MIN-Z24,LT.M2HI) GO TC 160
JGCDT=JGCOP+L2MIN=-JGT2

GO TO 235

IF(L2MIN=2.LT MZHT) GO TO 153

JGCOT=JGCDOP+(L2MIN-M2HI-M0D2) /2

GO TO 235
JGCDT=JGCDP+L2DIF

THIS PCINT JGCDT IS 1 LESS THAN THE INDEX FOR THE
FIRST GCD FUNCTION TO BE USED

SUM2=0. DO
L2MIN=L2MIN+1
GO TO KAMi,{24C,253,430})

* %* x % * * x %

Mi=C, SO IMAG,PART CF GAB=0

240

241

JGAB=JGAB+1
IF(LMMZ2L0.LT.0) GO TO 4320
JGCD=JGCDT

DO 250 L2P=L2MIN,L2MAX,2
L2=LgP-1

GO TGO KACM2,(242,244,248)

M2=0, SO IMAG. PART OF GCD=0

#*
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242 JGCD=JGCD+1
SUM2=SUM2+0OMEGA( JCMG(L,L1,C,L2,0) ) ¥SUMM(JIY1I2L+LP)
1 *¥GCD(JGCD) *¥0.5D00
GO TO 248

M2eNEsCyM1.EQe O

244 M2=M2L0

TERM WITH M2=M2L0=|{MC|-IMD{ |
ASSIGN 248 TO KOM2
JGCD=J4GCD+1

246 IF( NOTL,DSGNCD) GO TO 720

GCD HAS ONLY REAL PART NONZERD
TEMP2=SUMM(JY1 ZL+M2+LP) *GCD(JGCD)
GO T0O 720

GCD HAS ONLY IMAG PART NONZERO
720 TEMP2=SUMM{JY12L+M2)*GCD(JIGCD)
ISIGN2=(-1)%%M2
730 SUM2=SUM2+CMEGA( JOMG(L,L1,04L24M2) }*ISIGN2*TEMP2
GO TC KCM2,(242,250)
248 IF(DMZEQeORelL2eLTaM2HI) GO TO 250
JGCD=JGCD+1
IF(M2HI.GTeL) GO TO 250
M2=M2HI
TERM WITH M2=MZHI={IMCi+[MD]||
ASSIGN 25C TO KOWm2
GC TO 246
250 CONTINUE
SUMI=SUMI+GAR(JGAB)*SUM2Z
GO TO 430

* % * % * x* * * * %* ¥ * * *

Ml1.NE.O

253 M1=M1LO

SUM FOR M3I=M1LO={|MA{-IMBI]|
ASSIGN 4320 TO KMl
JGAB=JGAB+]

255 LMMl=L-M1
LPMI=t+M]
IF(M1,GT.LMM2LO) GO TO 260
ASSIGN 290 TC KL2
GO TC 262

260 ASSIGN 295 TO KL?2
ASSIGN 230 TC KM2

262 SUM2=0,CDO
SUM2=0, 0DO

Z80 JGCD=J4GCDT
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200

L0 4CC L2P=L2MIN,L2MAX,2
L2=L2P-1
GO TC KLZ2,(290,29%5)

290 IF(MZHI.LE.LMM1) GO TO 292
ASSIGN 305 TO KM2
G3 TG 295

292 ASSIGN 210 TO KM2

295 GO TO KAMM2,(296,300,390)

M2=C, SO IMAG PART OF GCD=C

296 JGCD=JGCD+1
IF(LMMILT,0) GO 7O 390

298 WTEMP=0OMEGA(JOMG(L,L1,M1,L2,0))*GCD(IGCD)*ISIGNI
JYIMAG=JY12L +M1
IF(CSGNABY GO 7O 790

GAB HAS CNLY IMAG PART NONZERQ
SUM3=SUM24+WTEMP=SUMM(JY IMAG)
GO TG 390

GAB HAS ONLY REAL PART NONZERG
TS0 SUM2=SUMZ+WTEMPXSUMM{JYIMAG+LP)
GO TO 290

M2.NEL O

20C M2=MZL0

TERM WITH M2=M2LO={{MC|-|MD{{
JGCO=JGCO+1
IF(M2.LT.~LMM1) GO TC 390
ASSIGN 390 TO KMM2

362 GO TO KM2, (205,310,320}

205 IF(M2.GT.LMM1) GO TQ 33C

SUM FOR +M2
31C JYIMAG=JY1ZL+M1I+M2
JYREAL=JYIMAG+LP
ISIGN1=(-1)*%M]
ISIGN2=(-1)*%¥M2
WTEMP=0OMEGA(JOMG (L L1,M1,L2,M2))%(ISIGNI*ISIGN2)
DS1=e TRUE
DS2=¢ TRUE
DS3=4 FALSE,
ASSIGN 32320 TO KBEEP
795 TEMPZ=0.CDO
TEMP2=C,0D0
IF{.NOT.DSGNAB) GO TO 840
IF(DSGNCD) GO 7O 832

GAR HAS ONLY REAL PART NONZERQO,
GCD HAS ONLY IMAG PART NCNZERO
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GAB
835
315

840

GAB

GAR
GCD
855

220
225

SUM
330

[3)]
['V]
n

GAB
239

870

GAR
238

340

345

35¢

201

TEMP2=SUMM(JYIMAG)*GCD(JGCD}
IF(«NOT.DS1) TEMP2=-TEMP2
GO0 70 315

AND GCD HAVE OMLY REAL PARTS NONZERG
TEMP2=SUMM(JYREAL )*GCD{JGCD)
SUM2=SUM2+WTEMP*TEMP2

G3 70O 3z*%

IF(DSGNCC)Y GO 70 &55

AND GCD HAVE ONLY IMAG PARTS NGNZERQD
TEMP3=SUMM(JYREAL )*GCD(JGCD}
IF{eNCT,DSZy TEMPZ=-TEMP3

GO TG 320

HAS CONLY IMAG PART NONZERO,
HAS CNLY REAL FART NONZERO
TEMP2=SUMM(JYIMAG)I*GCO(JIGCD)
IF(.NOT.DS2) TEMP3=-TEMP3
SUM3=SUM3+WTEMP*TEMP3

GO TO KBEEP,(22C,380)

FOR -M2

M2MM1=M2-M1
JYIMAG=JYLIZL+TABS(M2MM])
JYREAL=JYIMAG+LP
WTEMP=OMEGA(JOMG(L,LI,Mi4L2,~-M2))
IF(MZMMLI) 340,325,345
WTEMP=WTEMP*]SIGN2*SUMM (JYREAL)
IF(«NOToDSGNABY) GO TO 870
IF(,NOT, DSGNCD) GO TO 280

AND GCD HAVE ONLY REAL PARTS NONZERD
SUM2=SUM2+WTEMP*GCD(JGCD)

GO 7C 38C

IF(DSGNCD) GO TO 28¢C

AND GCD HAVE ONLY IMAG PARTS NONZERO
SUM2=SUMI+WTEMP*GCD(JGCD)
GO TC 280
WTEMP=WTEMP*ISIGN1
DSi=.FALSE,

DS2=4 TRUES

G0 TO 3&C
WTEMP=WTEMP*ISIGNZ

DS1=, TRUE

DS2=¢ FALSE,.

DS2=¢ TRUE,

ASSIGN 280 TQ KBEEP

GO TO 765
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380 GO TO KMM2,(250,400)

390 IF(DM2EN.TP.L2.LTeM2HI) GO TO 400
JGCD=JGCN+1
IF(M2HI.GT«LPMI) GO TO 400
M2=M2HI

C TERM WITH M2=M2HI={IMC{+{MDI{|

ASSIGN 4CC TO KMM2
GO TO 302

400 CONTINUE

SUM2 IS MULTIPLIED BY THE REAL PART OF GAB
SUM3 IS MULTIPLIED RY THE IMAG PART (OF GAB
IF{DSGNAB} GO 7O 420
SUM1=SUM1+SUM2%GAB(JGARY
GO TO KM1,(430,450)
420 SUM1=SUM1+SUM2%GAB(JGAB)
GO TO KM1,4(4304450)
4320 IF(DMiEQeORLl1cLTeMiIHI} GO TO 450
JGAB=JGAR+]
IF(MIHI.GT4LPMZHI) GO TO 450
M1=M1HI
C SUM FOR MI1=MIHI=]||MA[+({MB{{
ASSIGN 435G TO KM1
G3 TO 255

OO0

* * * % % * * * % * % * * *

[aNaNe!

450 CONTINUE
A(JAY=SUMI+SUM1
46C IF(MOD(LIMIN,2):EQeC) A(JA)==A(JA)
C STMNT 46C INTRODUCES FACTOR (=1)**L1

£70 JGCDP=JCGCDP+JGCDD
480 JGABP=JGABP+JGABD
NA=JA
RETURN
END

PROGRAM i5: DEL

C D&L CHECKS FOR G=0
C NBRNCH=1 - REAL TERM ,=2 - NO TERM
SUBROUTINE DELC(MSUMB,MINA,MIN3,MAMMB,DSGN,DBMIN,
1 NBRNCH)
IMPLICIT LOGICAL*1(D)
DMDIFO=¢ FALSE,
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D1=.FALSE.
IF(MSUMBe LE«C) D1=,TRUE,
D2=,FALSE.
D3=¢ FALSE.
IF(MAMMB) 2C,25,30
IF(MINA,GE.O0) D32=.TRUE,
GO TO 35
25 DMDIFC=,TRUE,
IF(MINA,GE.O) GO TO Z7
TF{MINBeGEe Q) D2=o TRUE,
GO 7O 3%
27 D2=«TRUEe
IF(MINB,GEel) D2=¢ TRUE
G3 70 25
20 IF(MINACGELO) D2=,TRUE.
IF(MINB,GEeG) D3=¢ TRUEA
35 IF(Di1) GO TO &C
IF{.NOT. D2} GO TO =0
IF(DMDIFO «AND.o NOT,OSGNY GC TO 60
GO TC SO
40 IF{D2+.AND.DBMIN) GO TO 60
50 NSRNCH=1
RETURN
&0 NBRNCH=2
RETURN
NRRNCH=1 - BOTH TERMSy=4 - NEITHER TERMS
NBRNCH=2 - REAL TERM ,=2 - IMAG TERM
ENTRY DELM(M,MSUMB,MINA,MINB, MAMMR,MM ,MA,MB,DSGN,
1 NBEQO,DBMIN, NBRNCH)
D1=.FALSE,
IF(MSUMB, LE. M) Dl=,TRUE.
D2=,FALSE.
D3=,FALSE.
IF(MAMMB) 100,150,250
100 ASSIGN 285 70 K¢
ASSIGN 290 7O K&
IF(MINB,GEeM) D2=4 TRUE,
IF(MINA.GE«M) D2=¢TRUE,
GO T0 260
15C IF(MINALGE.M) GO 70O 180
TF(MINB,GEsM) GO TO 165
IF(Dl) GO TO 155
NBRNCH=4&
RETURN |
155 IF(DBEQO.OR.M,EQ.MM) GO TO 160
NBRNCH=1
RETURN
160 IF(DSGN) GO TO 162
NBRNCH=3
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RETURN
162 NBRNCH=2
RETURN
D2=4 TRUE
165 IF{.NQOT.D1) GO 7O 17C
IF(.NOT.DBMIN) GO 70 170
NBRNCH=4
RETURN
17C IF(M.EQ. IABS(MBYIGO TO 172
NBRNCH=1
RETURN
172 IF({MR,GE.O) GO TO 175
NBRNCH=3
RETURN
175 NBRNCH=2
RETURN
D2=.TRUE.
18C IF(.NOT.D1) GO TC 200
IF{«NDT. DBMIN) GO TO 185
NRRNCH=&
RETURN
185 IF(MINB.GEeM) GO TO 190
186 IF(M.EQeIABS(MA)) GO TO 187
NBRNCH=1
RETURN
127 IF{MA.GE.C) GO 70 188
NBRNCH=2
RETURN
188 NBRNCH=2Z
RETURN
D3=+.TRUE.
1S0 NBRNCH=1
RZETURN
200 IF{MINB.LTeM) GO TO 186
D3=.TRUE.
NBRNCH=1
RETURN
25C ASSIGN 29C T@ K5
ASSIGN 285 TO K4
IF(MINA.GE«M) D2=.TRUE.
IF(MINReGEaM) D3=, TRUE.
2eC TF(D1) GO TO 200
IF(D2) GO TO 270
NBRNCH=4&
RETURN
270 IF{.N3T.D2) GO TGO 28C
IF(DBEQCY GO TO 160
N3RNCH=1
RETURN
280 IF(DBEQOeOR«M.EQ. IABS{MAMMB)) GO TO 160
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205

GO TO K4,(285,250)
IF(M, EQa TABS(MA))} GC TO 187
NRBRNCH=1

RETURN

IF(M. EQ.IABS{(MB)) GO TO 172
NBRNCH=1

RETURN

IF(,NOTaD2) GO TO 32C
IF(NOT,DBMIN) GO TC 310
NBRNCH=4

RETURN

IF(DBEQC) GO TO 160
IF(,NOT.D2}) GC 70 K&,(285,290C)
NBRNCH=1

RETURN

IF(DBEGC) GO TO 1é°C
IF(D2) GO TO K&,(290,285)
IF(Me EQuMM) GO TO 16C
NBRNCH=1

RETURN

END

M 16 JOMG

=SUBSCRIPT FOR ARRAY OMEGA

FUNCTION JOMG(L,L1,M1,{2,M2)

INTEGER*2 JOMEGA
DIMENSTGCN JOMEGA(3,45,9)

DATA JOMEGAY 1, Cy Oy 29 0y Oy
7y 0, ©Cy Cy 114 Oy O, O, 16,
01 09 23, 09 Cq 31, 0’ 09 09
479 509 O, 6Cy 68y 0, 03 839 o6,
0y, 0,116, C, 0,124,128,
0y Oy 0, Oy Q4176 0,189,200,
C, 09 01 Oy 01 01 01 09 09
316y Cy 0O, Oy Cy Oy Oy Oy Oy
01 0936493879 09 O, 09 O, 09
0, ©y 0O, 0,425, 0y, Gy 0Oy O
¢, 0y €y €y Oy 0, 0,457/
IF(LleGELL2} GO TO 20
LG=L2
MG=TISIGN(M2,M1)
LL=L1
ML=ISIGN(M1,M2)
G3 TC Z2¢C

LG=L1

Csy 4y Gy 0y
0y Oy 18, O¢
0y 429 0, O
01 01 0, 0’

0+1434154y 0Oy 0, Oy

092224227+247,
0,278, 0,296,
09 G, 0’3391
¢ty Oy O« Oy
0, 09 0’ 01
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MG=M1
LtL=L2
ML=M2
J=JOMEGA(LL/2414LG+1,L+1)
IF(MG-1) 33,36,4C
J=J+IABS (ML)
60 70 10C
26 J=J+MINC(L,LL)+MINC(LL,L+1)+ML+]
GG TO 1C¢
40 IF(LL.GT L-MG+1) GO TO 50
JEJHMEF(2%LL+1 ) +ML
GO T0O 100
50 IF(LL.LTLL+MG) GO TO 60
J=J+2FMGX(L+1)+ML
GO TO 1c¢O
60 J=J+MGR(L+LL+1)=(MGX(MG-1)+(L-LLI*(L-LL+1))/2¢ML
100 JOMG=J
RETURN
END

w
(@]

W
U
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PART TWO. COMMENTS ON LOCALIZED ORBITALS

IN DIATOMIC MOLECULES
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I. INTRODUCTION

In his original paper on the Hartree-Fock equations,
Fock (1930) pointed out that the same N-electron single deter-
minant wave function can be expressed in terms of infinitely
many sets of space orbitals. If two sets of orbitals {u.}
and {vk} are related by a unitary transformation
N

v, (%) = '21 u (KT,

in which T is an orthogonal matrix, that is

Yy T..T.. =] T..T . =86, .
£ ik™ij § 731 ki ik
then the N-electron wave function is

v = Al ];T u, (2k-1) o (2k-1) u, (2k) B (2k) ]

Al ];Tvk(Zk-l)a(Zk—l)vk(Zk)B(Zk)] .

Since measurable properties depend only on the total wave
function ¥, no one of these sets of orbitals can be said to
be more "correct" than any other. Thus, even after the total
wave function has been determined by energy minimization,
there still remains some freedom in choosing the orbitals.

Many investigators have made use of this freedom. Hund
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(1931, 1932) used it in connection with H,0, and Coulson
(1937, 1942) in connection with CH4. Sets of "equivalent"
orbitals, for symmetric molecules, were constructed by
Lennard-Jones and Hall (Lennard-Jones, 194%9a, 1949b; Hall and
Lennard-Jdones, 1950): certain symmetry operations transform
one of the equivalent orbitals into another. Lennard-Jones
and Pople (1950) observed that the equivalent orbitals are
"localized" in the sense that they minimize the electronic

interactions between different orbitals. This property can

be used to define localized orbitals for systems to which the
concept of equivalent orbitals is inapplicable: atoms, and
molecules having no symmetry. Edmiston and Ruedenberg (1963,
1965, 1966) have devised a method for determining such local-
ized orbitals, and have calculated them for a large number of
systems. (Other kinds of localized orbitals have been de-
fined, for example by Boys (1960) and by Ruedenberg (1962),
but we shall not be concerned with them here.)

The definition of these localized orbitals will now be
stated precisely. The electronic interaction energy of a

system with wave functicn Y can be written

EI = (¥| } ri."llw) =C-X ,
i<j J

in which C is the Coulomb term
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and X is the exchange term

X=177% luulaul .
n m

The notation
(o u,fuul = jéVi jﬁvz uk*(l)uz(l)rlz—lum*(Z)un(Z)

has been used. Since EI depends only on the wave function Y,
it is invariant with respect to unitary transformations among
the orbitals. But it is also true that C and X are invariant
with respect to such transformations. (See, e.g. (Edmiston
and Ruedenberg, 1963).) Now the Coulomb and exchange terms
can each be split into a term which includes the orbital self-

repulsions and a term which includes only interorbital inter-

actions:
C = 2(C*' + D) and X =X'"+D ’
with
_ 2 2
D =) [u v “]
n
ngm
X'= ) [uu |uu]l .
nim nm! nm

These quantities, C' , X' and D, are not invariant with re-
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spect to orbital transformations. Thus the localized orbitals
can be defined as that orthonormal basis in the space spanned
by {uk} for which D, the sum of orbital self-repulsions, is
maximum. It is clear from the invariance of C and X that max-
imization of D implies minimization of C' and X' . Thus the
localized orbitals are indeed "localized", in the sense that
they interact with each other to the least possible degree.

The method for determining the localized orbitals for a
system, given some set of orbitals for that system, is based
on the maximization of D. This method is described in detail
by Edmiston and Ruedenberg (1963, 1965).

The localized orbitals have several useful characteris-
tics. Localized molecular orbitals (LMO's) often turn out to
be inner shells, lone pairs and bonding orbitals, which corre-
spond quite well with traditional chemical concepts. Further-
more, the LMO's are often transferable with very little change
between similar molecules. This property makes them partic-
ularly suitable for studying the similarities and differences
between molecules. On the other hand, the canonical Hartree-
Fock orbitals are particularly suited for the comparison of
different electronic states of the same molecule. A thorough
discussion of these points is given by England, Salmon and
Ruedenberg (1971).

Edmiston and Ruedenberg (1865) have determined LMO's for
a number of diatomic molecules containing atoms of the first

row of the periodic table. They used as a starting point the



216

minimal basis set wave functions of Ransil (1960a, 1960b) and
of Padgett (1958). Contour plots of these LMO's are presented
here. These provide no information beyond that given by
Edmiston and Ruedenberg (1965), but they present that infor-
mation in a way which makes it easier to see certain interest-
ing properties of the LMO's. In particular, they facilitate
comparisons of different orbitals. We shall first discuss

the ofbitals molecule-by-molecule, and then compare similar

orbitals in different molecules.
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II. CONTOUR DIAGRAMS OF LMO'S

A. General Considerations

We present here contour diagrams of LMO's for certain
diatomic molecules containing atoms of the first row of the
periodic table. It should be emphasized that the function
plotted is the orbital itself, not the electron density. The
contours are lines of constant density, but the increments in
density between them are not constant. The increment in the
value of the orbital is ccnstant for each contour plot. How-
ever, the same increment was not used for each plot, and this
fact should be kept in mind when comparing them. The orbital
increment will be given for each diagram.

The orbitals plotted are all minimum-basis-set functions.
The most accurate of the functions found by Edmiston and
Ruedenberg were used in all cases. In some cases wave func-
tions in which the orbital exponents had been varied to mini-
mize the energy of the molecule (best-mclecule atomic orbi-
tals or BMO's) were available; in others, Slater-orbitals
(with orbital exponents determined by Slater's rules; abbre-
viated by SAO's) were used. We shall indicate in each case
which kind of function is given.

In all cases the diagrams are drawn in a plane contain-
ing the internuclear axis. The positions of the nucleli are
indicated by heavy dots. The scale is shown on the figures,

and is the same throughout. Contours for which the orbital
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has a positive value are shown as solid lines, those for
which it has a negative value are shown as broken lines, and
the nodes are shown as dotted lines. The sign of the wave
function is shown whenever this is feasible.

The diagrams were produced in two steps. First, the
value of the wave function was computed for each point on a
rectangular grid. The resulting array of numbers was then
used by a standard contour-plotting program to find lines of
constant function value. The plots were made by an IBM 7074

computer and a CALCOMP plotter.

B. Orbitals in Various Molecules

1. Molecules having sigma bonds

Figures 4 and 5 exhibit contour diagrams of all localized
molecular orbitals (BMO) in the molecules Li2 and LiH, respec-
tively. In Li2 there are two inner shell orbitals and a bond-
ing orbital. For LiH there are an inner shell orbital on
lithium and a LiH bonding orbital. All of these orbitals are
of sigma type, that is, they are symmetric with respect to
rotation around the internuclear axis.

For the bonding orbital of Li2 , the outermost contour
line corresponds to an orbital value of 0.005, the next con-
tour line to 0.015, the next to 0.025 as indicated. Thus the
increment is 0.01 Bohr_3/2 in this case. By contrast, the
outermost contour in the bonding orbital of LiH corresponds‘

to an orbital value of 0.025 Bohr /2 , and the increment of
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Figure 4. Localized MO's in L:i.2
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Figure 5. Localized MO's in LiH
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the wave function value from one contour line to another is
also 0.025 Bohr_3/2 in this case. Comparison of Li2 and LiH
shows that the Li2 valence orbital is considerably larger
than the LiH valence orbital and that its maximum is much
lower. In short, it is a much less compact orbital. The
bonding orbitals of Li2 and LiH have a rather strong negative
peak near the Li nucleus which establishes orthogonality to
the inner shells.

For the inner shells the outermost contour is again
0.025 Bohr—3/2 . Because their value changes so rapidly, the
increment for them is 0.2 Bohr—3/2 . Three of these inner
shell contours are drawn. If the remaining inner shell con-
tours were drawn, the inner part would be solid black. For
this reason, the inner shell contours are not drawn beyond the
third one and, instead, the value of the inner shell orbital
at the position of the nucleus has been written into the dia-
gram. From the figure, it is obvious that the inner shell of
lithium is very similar in Li2 and LiH and in a very practical
sense transferable. However, note that the localized inner
shell orbital of the lithium atom has a slight negative tail

towards the other atom which yields a very small amount of

antibinding.

2. Molecules having sigma bonds and sigma lone pairs

Figure 6 shows all localized orbitals for the ground

state of the BH molecule (BMO) and the 12 + excited state of



Figure 6. Localized MO's in BH and the
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B2 (SAO0) . These are again rotationally symmetric orbitals,
i.e., sigma type orbitals, and the complete contour surfaces
can be obtained by spinning around the indicated axis. In all
orbitals shown the outermost contour corresponds to a wave
function value of 0.025 Bohr_3/2 . For all valence shell or-
bitals the increment from one contour to another is 0.025
Bohr_3/2 . For the inner shells the increment is again

0.2 Bohr-3/2 , but only three contours and the wave function
values at the nuclear positions are shown.

The plots show clearly that the lone pair orbitals have
almost all their density on that side of the atom which
points away from the bond, whereas the bonding orbitals have
almost all their density in between the two atoms. There is
of course some local overlap between the orbitals; in par-
ticular, the bonding orbital has some negative contributions
in the lone pair region and the lone pair orbital has some
negative contribution in the bonding region, so that the
resulting orbitals will be orthogonal to each other. It is
evident that the positive contours of the lone pair orbital
have very similar distributions in B2 and BH, as one would
like to see them have. It is gratifying that the negative
sides are only somewhat different even though rather differ-
ent atoms are involved.

For the inner shell orbitals, too, one finds near-perfect

transferability as was the case for lithium.
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3. Molecules having sigma bonds and triple lone pairs

Figure 7 exhibits the localized orbital structure of the

F, and HF molecules (BMO). The wave function for the F2

2
molecule is made up from one localized crbital representin

a single sigma bond and six lone pair orbitals, three on each
atom, which accommodate the twelve lone pair electrons. All
orbitals are much more contracted than those of boron, because
of the higher nuclear charge of fluorine (note that the scale
of all figures is the same). The outermost contour corre-

sponds again to 0.025 Bohr—‘?'/2 , but the increment between

adjacent contours in the valence shell is now 0.05 Bohr“3/2 .
The contour surfaces of the bonding orbital can be obtained
by spinning the contours around the nuclear axis.

For the lone pair orbitals the situation is somewhat
more complicated. There are three trigonally equivalent lone
pair orbitals at each end of the molecule which are arranged
at 120° to each otherxr; only one of these is shown on each
atom. It can be observed that the lone pair orbital 1looks
very much like an (s-p) hybrid on that particular atom, ex-
cept for the slight build-up of charge near the other atom.
By connecting the position of the nucleus with the maximum of
the lone pair orbital one can define an approximate axis of
the lone pair orbital. The three-dimensional contours of
this lone pair are approximated by spinning the orbital around

this axis, except in the region near the other atom. It is of

interest that this axis of the lone pair orbital is not very
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Figure 7. Localized MO's in F2 and HF
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far from being perpendicular to the internuclear axis. It is
much less inclined toward the back of the molecule than it
would be in the case of tetrahedral hybridization. This
shows that the electrostatic repulsion between the three lone
pair orbitals is stronger in its effect than the repulsion
between any one lone pair and the bonding orbital.

The relation between F. and HF is similar to that ob-

2
served between B2 and BH. The HF molecule has a sigma bond-
ing orbital and has three trigonally equivalent lone pairs,
which are almost identical in character and shape to the
corresponding lone pairs of F, . These contracted lone pairs
are less sensitive to the other atom than those on B. We
also find nearly complete transferability between the inner
shells. Here again the outermost contour is 0.025 Bohr—3/2
and the increment of those contours which are shown is

0.2 Bohr 372 .

The main difference between the two molecules lies in
tke bonding orbital, although the part of the bonding orbital
near the fluorine nucleus is rather similar in the two sys-
tems. In both molecules the bonding orbital exhibits a maxi-
mum close to the fluorine atom, which arises from the in-
creased (2po) admixture to the bonding orbital. Thus, pro-
ceeding from F along the internuclear axis, the orbital rises
from the value zero, at the atom, to the maximum, and then
begins to drop in the bond region. This is different from

what was seen in B2 and BH.
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4. Molecules having a tripie bond and sigma lone pairs

The left side of Figure 8 shows the localized orbital
structure of the N2 molecule (BMO). There are one lone pair
on each nitrogen atom and three trigonally equivalent "banana"
bonds between the two atoms. The outermost contour in each
orbital shown in this figure represents an orbital value of

0.025 Bohr /2 . The increment is 0.05 Bohr /2 for the

valence orbitals and 0.2 Bohr-3/2 for the inner shell orbi-

tals. There are three bonding orbitals arranged in a trig-
onally symmetric fashion around the internuclear axis; only
one of them is shown in the figure. For this one, the con-
tour lines in the plane containing the orbital maximum and
the internuclear axis are exhibited. The three-dimensional
contours can be expected to form a three-dimensional cloud
essentially above the internuclear axis. The cross section
in a plane perpendicular to the axis should be roughly that
of a (p)-type distribution. A distinct maximum is observed
near each nucleus, but it is less pronounced than those seen
in the sigma bonding orbitals of F2 and HF.

The right side of the figure shows the localized struc-
ture of the CO molecule (SAO). The guantitative meanings of
the contours are the same as in N, . CO is isoelectronic
with N2 , and the localized orbital structure brings this out
very clearly. One can imagine the CO structure as obtained
from the N2 structure by transferring one proton charge from

the left nucleus to the right nucleus. This results in the
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Localized MO's in N2 and CO

Figure 8.
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contraction of the lone pair near the O nucleus and the expan-
sion of the lone pair near the C nucleus, as compared to the
nitrogen lone pairs. Due to the orthogonality requirement,
the negative contours of the carbon lone pair are less spread
toward oxygen than are the negative contours of the oxygen
lone pair toward carbon. The negative contours of the N,
lone pairs are intermediate in spread. Moreover, each of the
three bonding orbitals is polarized towards the oxygen atom.
Finally, the inner shell of oxygen is smaller than that of
nitrogen, whereas that of carbon is larger.

The third molecule in this isoelectronic series, BF, is
shown on the left side of Figure 9. The localized orbitals
(SAO) are completely analogous to N2 and CO, except that the
charge difference between B and F is even greater than that
between C and 0. Hence the lone pair of fluorine is even
more contracted near the F nucleus and more diffuse toward
the B nucleus, whereas the lone pair of boron is more expanded
near the B nucleus and less spread toward the F nucleus. The
inner shell of fluorine is also contracted; the inner shell
of boron is expanded. The three trigonal bonding orbitals
are even more polarized towards the heavy atom than they were
in CO and concomitantly acquire more fluorine character. In
fact, near the fluorine atom the trigonal bonding orbitals
look similar to the trigonal lone pairs of fluorine found in
F2 and HF, except that the axis is, of course, tilted towards

the bond. Since the boron lone pair orbital is considerably
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Li

Localized MO's in BF and LiF

Figure 9.
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more extended, the increment between adjacent contours is
chosen to be 0.025 Bohr /2 ; that is, a step by two contours
in the B lone pair corresponds to a step by one contour in
the F lone pair or in the bonding orbital in this figure.

The right side of Figure 9 shows the LiF molecule (SAO).
Although it is not isocelectronic with BF, its localized
structure is not so different, because it can be thought of
as being obtained from the BF molecule by removing two posi-
tive nuclear charges and the two lone pair electrons from the
boron atom. There remain then the fluorine lone pair and
inner shell orbitals, all of which are similar to those found
in BF, and the trigonal bonding orbitals which, although they
are even more polarized towards the fluorine atom, still show
some similarity to those found in BF. The inner shell in
lithium is, of course, considerably larger, and similar to

that found in Li2 and in LiH.

5. A molecule having a triple bond and no lone pair

The ground state of the NH molecule has the electron
configuration 32 (10)2(20)2(30)2(nx)(ny). When the wx, 7y
orbitals are excluded from the localization procedure, the
localized structure consists of an inner shell on nitrogen,
a lone pair on nit;ogen and a sigma bonding orbital. A vis-
ualization of this can be obtained from the oxygen atom in

the electron configuration (ls)2(25)2(2pcxe(2pv)(2p?).

First, we hybridize the (2s) and (2pc) orbitals to obtain
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Figure 10. Localized MO's in the lZ (10)2(20)2(117)4

excited state of NH

digonal hybrids. Then, we imagine removing a proton from in-
side the O nucleus to obtain N and H nuclei. The digonal hy-
brids on O then become a lone pair on N and a ¢ bonding
orbital.

In Figure 10, there is shown the localized orbital (SAQ)
structure of the 12 (lo)z(Zc)z(lw)4 excited state, which
can be thought to result from promoting two electrons from
the ¢ lone pair into the nonbonding orbitals (wx) and (7y).,
which are essentially atomic (p) orbitals. When this struc-

ture is localized, the sigma bonding orbital combines with
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the 7 orbitals to form three trigonally arranged banana bonds
between the nitrogen and the hydrogen, only one of which is
shown in the figure. The gquantitative meanings of the con-
tours are the same as for N2 and LiF. Unlike other cases
involving a common atom in different molecules (e.g. B, , BH,
BF), the inner shell in NH is more nearly spherically symmet-
ric about N than are the inner shells on N2 ; i.e., the atomic
(1s) orbitals in N, are mixed with the valence atomic orbitals
to a slightly greater extent than the nitrogen (ls) orbital in
NH. Perhaps this is due to the fact that there is no longer a
sigma lone pair. The resulting structure of bonding orbitals
is analogous to that found in LiF. This example shows how

localization can lead to different localized orbitals in dif-

ferent states of a molecule.

C. Similar Orbitals in Different Molecules

1. Comparison of sigma lone pair orbitals in different

molecules

In Figure 11 we have collected all sigma lone pairs for
the molecules discussed in the previous section. They are
arranged according to increasing nuclear charge. The overall
impression is that of a great similarity in the geometrical
shapes of the lone pair orbitals. In all cases the density
is concentrated on the side of the atom away from the bond,
and in all cases the shape is that of an (s-p) hybrid with

considerable (s) character. Except for F, the latter is



Figure 11, Sigma lone pair MO's for diatomic molecules
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always larger than 50%. The larger the fraction of the
valence orbitals which are lone pairs, the larger the {2s)
character of the lone pair orbitals (Edmiston and Ruedenberg,
1963, 1965). In all cases, there is a smaller negative con-
tribution towards the second atom. Even though different
atoms are involved, the general shape of this usually weak
antibonding contribution is fairly uniform. The general lone
pair shape is preserved throughout the whole series, even
though the overall size of the lone pair orbital decreases
progressively as one proceeds from lighter to heavier nuclei.
All lone palr orbitals have a node between the two atoms
and, hence, have a slightly antibonding character. This
destabilizing effect of the lone pair localized molecular
orbitals corresponds to the nonbonded repulsions between lone
pair atomic orbitals in the valence bond theory. 1In the MO
theory all bonding and antibonding resonance effects can be

described as sums of contributions from orthogonal molecular

orbitals. Hence, the "nonbonded repulsions" appear here as

"intra-orkbital"” antibonding effects in contrast to the valence

bond description.

Very close transferability can be observed between the
three borcn and the two fluorine lone pair orbitals. From
these results, it appears virtually certain that if one has a
localized orbital in a larger molecule, and if one changes
some of tke atoms which the orbital itself doe§ not reach,

then almost absolute transferability can be expected.
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2. Comparison of sigma bonding orbitals in different

molecules

All sigma bondinglafgitals in the molecules considered
are collected in Figure 12. To save space, the two outer
contours of the Li2 molecule have been removed (c.f. Figure
4) . The bonding orbitals show the overall contraction going
from light atoms to heavy atoms. Also observe that in B,
and Fy s the bonding orbital has negative parts in the lone
palr regions, because it has to be orthogonal to the lone
pairs; this is not the case in Li2 .

As regards the hydrides, it is of interest to compare
the bonding orbitals of BH and HF with the corresponding lone
pairs on B and F shown in Figure 11. The similarity in the
overall size of the bonding and the lone pair orbitals is
guite remarkable. This indicates that there must be a large
degree of overlap between the H orbital and the (sp) hybrid
of the heavy atom contributing to the bonding orbital. How-
ever, it is apparent that this hybrid has more (p) character
than the lone pair. In going from LiH to BH to HF the bond-
ing orbital acquires an increasingly greater (po) character
because of an increasing amount of nonbonded - repulsion from
leone pair electrons. This is manifest in the bonding orbital
as an elongation and an increased number of negative contours

outside the bond region from LiH to BH to HF.
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Figure 12. Sigma bonding MO's for diatomic molecules
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3. Comparison of trigonal orbitals in different molecules

Figure 13 contains all trigonal orbitals in the molecules
considered. The bonding orbitals in the left column exhibit
the increasing polarization from N2 to LiF. Moreover, £ﬁe
inclination of the contributing (s—-p) hybrid of the right atom
into the bond region diminishes as the polarization increases,
i.e., the axis of this hybrid is much closer to being perpen-
dicular to the internuclear axis in LiF than in NZ‘ Clearly,
an increase in (p) character accompanies the diminished
inclination.

The lone pairs in F, are even more nearly perpendicular
to the internuclear axis. They are very similar, but the one
in HF is slightly more inclined away from the bond; i.e., it
has a slightly lower (p) character. This is so, presumably,
because the HF bonding orbital puts more charge in the imme-

diate neighborhood of the F atom.



Figure 13. Trigonal bonding and lone pair MO's for diatomic

molecules
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